Аргон. Химический элемент аргон


Аргон | Virtual Laboratory Wiki

Аргон(Ar) Свойства атома Химические свойства Термодинамические свойства простого вещества Кристаллическая решётка простого вещества
Атомный номер 18
Внешний вид простого вещества инертный газ без цвета, вкуса и запаха
Атомная масса(молярная масса) 39,948 а. е. м. (г/моль)
Радиус атома 71- пм
Энергия ионизации(первый электрон) 1519,6(15,75) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s2 3p6
Ковалентный радиус 98 пм
Радиус иона n/a пм
Электроотрицательность(по Полингу) 0,0
Электродный потенциал 0
Степени окисления 0
Плотность (при -186 °C)1,40 г/см³
Удельная теплоёмкость
0,138 Дж/(K·моль)
Теплопроводность 0,0177 Вт/(м·K)
Температура плавления 83,8 K
Теплота плавления n/a кДж/моль
Температура кипения 87,3 K
Теплота испарения 6,52 кДж/моль
Молярный объём 24,2 см³/моль
Структура решётки кубическая гранецентрированая
Период решётки 5,260 Å
Отношение c/a n/a
Температура Дебая 85,00 K
Ar 18
39,948
3s²3p6
Аргон

Арго́н — химический элемент с атомным номером 18. Третий по распространённости элемент в атмосфере — 0,93 % по объёму.

    Файл:Electron shell 018 Argon.svg

    Аргон был открыт в 1894 году английскими физиками Уильямом Рамзаем и Джоном Рэлеем, за что в 1904 году У.Рамзай был удостоен Нобелевской премии по химии, а Дж.Рэлей - Нобелевской премии по физике. Затем были открыты остальные инертные газы.

    Происхождение названия Править

    Именно из-за своей удивительной химической инертности новый газ и получил своё название (греч. αργός — неактивный).

    Аргон в природе Править

    Аргон - третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере земли составляест 0,934% по объему, (1,292% по массе).

    В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9°C аргон конденсируется, при −189,4°С — кристаллизуется.

    Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9°C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20°C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

    Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Аr, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

    Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[1]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3</sup> и FArCCH

    Файл:ArTube.jpg
    • в аргоновых лазерах
    • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
    • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов, так и неметаллов
    • в качестве плазмаобразователя в плазматронах при сварке и резке
    • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
    1. ↑ http://www.sciencemag.org/cgi/content/full/sci;295/5563/2242
    af:Argon

    ar:أرغون (عنصر) ast:Argón az:Arqon be:Аргон bg:Аргон bn:আর্গন bs:Argon ca:Argó co:Argone cs:Argon cv:Аргон cy:Argon da:Argon de:Argon el:Αργό en:Argon eo:Argono es:Argón et:Argoon eu:Argon fa:آرگون fi:Argon fr:Argon fur:Argon gl:Argon gv:Argon hak:Â haw:‘Aragona he:ארגון (יסוד) hi:आर्गन hr:Argon ht:Agon hu:Argon hy:Արգոն id:Argon io:Argono is:Argon it:Argon ja:アルゴン jbo:laznynavni jv:Argon kn:ಆರ್ಗಾನ್ ko:아르곤 la:Argon lb:Argon li:Argon lt:Argonas lv:Argons mi:Argon mk:Аргон ml:ആര്‍ഗണ്‍ mn:Аргон mr:आर्गॉन ms:Argon nds:Argon nl:Argon nn:Argon no:Argon oc:Argon pa:ਆਰਗਾਨ pl:Argon pt:Árgon qu:Argun ro:Argon scn:Argon sh:Argon simple:Argon sk:Argón sl:Projekt:Argon sq:Argoni sr:Аргон stq:Argon sv:Argon sw:Arigoni th:อาร์กอน tr:Argon uk:Аргон uz:Argon vi:Agon zh:氩

    ru.vlab.wikia.com

    Реферат Аргон

    скачать

    Реферат на тему:

    План:

      Введение
    • 1 История
      • 1.1 Происхождение названия
    • 2 Распространённость
      • 2.1 Во Вселенной
      • 2.2 Земная кора
    • 3 Определение
    • 4 Физические свойства
    • 5 Химические свойства
    • 6 Изотопы
    • 7 Получение
    • 8 Применение
    • 9 Биологическая роль
      • 9.1 Физиологическое действие
    • Примечания

    Введение

    Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440–37–1) — инертный одноатомный газ без цвета, вкуса и запаха.

    1. История

    История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекращалось, но, после связывания оставшегося кислорода, оставался газовый пузырь, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха[3][4][5]. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

    Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота[3].

    Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос[3][4].

    У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы)[4].

    Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней[3].

    Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа[3].

    Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество[3].

    Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества[3].

    Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов[3].

    7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %)[3][4]. Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон[3].

    Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии[3].

    1.1. Происхождение названия

    По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность[3].

    2. Распространённость

    2.1. Во Вселенной

    Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе[6].

    Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения[7].

    2.2. Земная кора

    Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе[4][7], его запасы в атмосфере оцениваются в 4×1014 т[2][4]. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона)[4][7].

    Содержание аргона в литосфере — 4×10−6 % по массе[2]. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5×10−5 — 9,7×10−5 %. Его содержание в Мировом океане оценивается в 7,5×1011 т, а в изверженных породах земной оболочки — 16,5×1011 т[7].

    3. Определение

    Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, h3, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа[2].

    4. Физические свойства

    Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

    5. Химические свойства

    Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

    Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[8]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

    6. Изотопы

    Аргон представлен в земной атмосфере тремя стабильными изотопами: 36Ar (0,337 %), 38Ar (0,063 %), 40Ar (99,600 %)[4][7]. Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

    Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

    Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

    Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона[7].

    7. Получение

    В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C аргон конденсируется, при −189,4 °C — кристаллизуется.

    8. Применение

    Заполненная аргоном и парами ртути газоразрядная трубка

    Ниже перечислены области применения аргона:

    • в аргоновых лазерах
    • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
    • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов
    • в качестве плазмаобразователя в плазматронах при сварке и резке
    • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
    • в качестве огнетушащего вещества в газовых установках пожаротушения
    • в медицине во время операций для очистки воздуха и разрезов, так как аргон почти не образует химических соединений
    • из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков:
    • высокая цена газа (кроме этого нужна отдельная система для аргона)
    • существует риск перепутать баллон с аргоном с пони-баллоном (оба окрашены в жёлтый цвет)

    9. Биологическая роль

    Аргон не играет никакой биологической роли.

    9.1. Физиологическое действие

    Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа[9].

    Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания)[10].

    Примечания

    1. ↑ 123Size of argon in several environments - www.webelements.com/argon/atom_sizes.html  (англ.). www.webelements.com.
    2. ↑ 1234Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 194. — 623 с. — 100 000 экз.
    3. ↑ 123456789101112Финкельштейн Д.Н. Глава II. Открытие инертных газов и периодический закон Менделеева // Инертные газы - www.book-ua.org/FILES/chem/25_11_2007/ch2434.djvu. — Изд. 2-е. — М.: Наука, 1979. — С. 30-38. — 200 с. — («Наука и технический прогресс»). — 19000 экз.
    4. ↑ 12345678Фастовский В.Г., Ровинский А.Е., Петровский Ю.В. Глава первая. Открытие. Происхождение. Распространенность. Применение // Инертные газы. — Изд. 2-е. — М.: Атомиздат, 1972. — С. 3-13. — 352 с. — 2400 экз.
    5. Mary Elvira Weeks XVIII. The inert gases // Discovery of the elements : collected reprints of a series of articles published in the Journal of Chemical Education - books.google.com.by/books?id=SJIk9BPdNWcC&lpg=PP1&ots=ApP92h4LUg&dq=Mary Elvira Weeks, Discovery of the Elements&hl=ru&pg=PA278. — 3rd ed. rev. — Kila, MT: Kessinger Publishing, 2003. — P. 286-288. — 380 p. — ISBN 0766138720 9780766138728
    6. Argon: geological information - www.webelements.com/argon/geology.html  (англ.). www.webelements.com.
    7. ↑ 123456Финкельштейн Д.Н. Глава IV. Инертные газы на Земле и в космосе // Инертные газы - www.book-ua.org/FILES/chem/25_11_2007/ch2434.djvu. — Изд. 2-е. — М.: Наука, 1979. — С. 76-110. — 200 с. — («Наука и технический прогресс»). — 19000 экз.
    8. Science Magazine: Sign In | Science/AAAS - www.sciencemag.org/cgi/content/full/sci;295/5563/2242
    9. Павлов Б.Н. Проблема защиты человека в экстремальных условиях гипербарической среды обитания - www.argonavt.com/content/view/142/80/  . www.argonavt.com (2007-05-15).
    10. Argon (Ar) - Chemical properties, Health and Environmental effects - www.lenntech.com/Periodic-chart-elements/ar-en.htm  (англ.). www.lenntech.com.

    wreferat.baza-referat.ru

    аргон - это... Что такое аргон?

    АРГО́Н -а; м. [от греч. argon - недеятельный]. Химический элемент (Ar), инертный газ без цвета и запаха, входящий в состав воздуха (применяется для наполнения электрических ламп, в металлургии, химии и т.п.).

    ◁ Арго́новый, -ая, -ое. А-ые трубки реклам.

    АРГО́Н (лат. Аrgon), Ar (читается «аргон»), химический элемент с атомным номером 18, атомная масса 39,948. Относится к группе инертных, или благородных (см. БЛАГОРОДНЫЕ ГАЗЫ), газов (восьмая группа периодической системы), замыкает третий период. Природный аргон состоит из трех стабильных нуклидов (см. НУКЛИД) : 36Ar (0,337%), 38Ar(0,063%) и 40Ar(99,600%). Радиус нейтрального атома аргона 0,192 нм. Электронная конфигурация нейтрального невозбужденного атома 1s22s2p63s2p6. Энергии последовательной ионизации нейтрального атома равны, соответственно, 15,759, 27,63, 40,91, 59,8 и 75 эВ. Простое вещество аргон — газ без запаха, цвета и вкуса. История открытия К открытию аргона привело обнаруженное в 1892 году английским физиком Дж. Рэлеем (см. РЭЛЕЙ Джон Уильям) небольшое (всего на 0,13%) превышение плотности азота, выделяемого из воздуха, над плотностью «химического» азота, возникающего при термическом разложении нитрита аммония Nh5NO2. Вместе с другим английским физиком У. Рамзаем (см. РАМЗАЙ Уильям) Дж. Рэлей в 1894 году выделил из воздуха примесь более тяжелого (по сравнению с азотом) газа, который отличался одноатомным составом молекул и практически полной химической недеятельностью (аргон не вступает ни в какие химические реакции). Именно из-за своей удивительной химической инертности новый газ и получил свое название (греч. аrgos — неактивный). Аргон в природе Аргон распространен в природе только в свободном виде. В земной коре его содержание составляет 1,2·10-4%, в морской воде — 0,45·10-4%. В атмосферном воздухе содержится 0,93% аргона по объему (9,34 л в 1м3). Это значительно больше, чем содержание в воздухе всех остальных инертных газов вместе взятых. Воздух служит неиссякаемым источником для получения аргона. Обращает на себя внимание преобладание в смеси природных нуклидов аргона самого тяжелого — аргона-40. Это связано с тем, что 40Ar постоянно образуется за счет распада радиоактивного калия-40. В 1 т калия за год при радиоактивном распаде калия-40 путем захвата орбитального электрона (так называемый электронный захват (см. ЭЛЕКТРОННЫЙ ЗАХВАТ), или К-захват; на этот тип радиоактивного распада калия-40 приходится 12% от всех актов распада этого природного радионуклида) образуется всего около 3100 атомов аргона-40. Но калий — один из самых распространенных на Земле элементов, да и время, прошедшее за долгую историю Земли, исчисляется миллиардами лет. Поэтому 40Ar накопился в земной атмосфере в значительных количествах. Преобладание тяжелого аргона-40 в природной смеси изотопов этого элемента приводит к тому, что атомная масса элемента аргона оказывается немного выше, чем следующего за ним в периодической системе элемента калия. Однако, когда Менделеев создавал свою знаменитую таблицу, проблема, как разместить калий и аргон, у него не возникала, так как аргон был открыт спустя почти 30 лет после открытия периодического закона, и в таблицу (в группу, которой тогда присвоили номер ноль) попал только в начале 20-го века. В настоящее время аргон, как и другие инертные газы, включают в восьмую группу периодической системы элементов. Получение В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. Физические свойства Аргон — одноатомный газ с температурой кипения (при нормальном давлении) –185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота), температура плавления –189,3°C. Критическая температура –122,43 °C, критическое давление 4,86 МПа. Плотность при нормальных условиях 1,7839 кг/м3. В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Как уже говорилось, химических соединений не образует. Однако со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом (см. ФЕНОЛ), гидрохиноном (см. ГИДРОХИНОН) и другими), образует соединения включения (клатраты (см. КЛАТРАТЫ)), где атом аргона, как своего рода «гость», находится в полости, образованной в кристалической решетке молекулами вещества-хозяина. Применение Аргон широко используют для создания инертной и защитной атмосферы, прежде всего при термической обработке легко окисляющихся металлов (аргоновая плавка, аргоновая сварка и другие). В атмосфере аргона получают кристаллы полупроводников и многие другие сверхчистые материалы. Аргоном часто заполняют электрические лампочки (для замедления испарения вольфрама (см. ВОЛЬФРАМ) со спирали). При пропускании электрического разряда через стеклянную трубку, заполненную аргоном, наблюдается сине-голубое свечение, что широко используется, например, в светящейся рекламе. В геохронологии (см. ГЕОХРОНОЛОГИЯ) по оределению соотношения изотопов 40Ar/40К устанавливают возраст минераллов.

    fr.academic.ru