Аргон инертный газ (стр. 1 из 3). Газ аргон


Аргон инертный газ

Общие сведения об открытиях благородных газов

К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они не похожи ни на какие другие элементы и в периодической системе располагаются между типичными металлами и неметаллами.

История открытия инертных газов представляет большой интерес: во-первых, как триумф введённых Ломоносовым количественных методов химии(открытие аргона), а во-вторых, как триумф теоретического предвидения (открытие остальных инертных газов), опирающегося на величайшее обобщение химии – периодический закон Менделеева.

Открытие физиком Рэлеем и химиком Рамзаем первого благородного газа – аргона – произошло в то время, когда построение периодической системы казалось завершённым и в ней оставалось лишь несколько пустых клеток.

Ещё 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин...

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически. “Воздух при помощи раскалённой меди был лишён своего кислорода и затем нагрет с кусочками магния в трубочке. После того как значительное количество азота было поглощено магнием, была определена плотность остатка. Плотность оказалась в 15 раз больше плотности водорода, тогда как плотность азота только в 14 раз больше её. Эта плотность возрастала ещё по мере дальнейшего поглощения азота, пока не достигла 18. Этим было доказано, что воздух содержит газ, плотность которого больше плотности азота… Я получил 100 см3 этого вещества и нашёл его плотность равной 19,9. Оно оказалось одноатомным газом.” Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную - почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя, которое в переводе с греческого значит «недеятельный».

Гелий впервые был идентифицирован как химический элемент в 1868 П.Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж.Локьер и П.Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э.Франкленд назвали новый элемент гелием от греч. «гелиос», что означает солнце. В то время не знали, что гелий – инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У.Рамзай и почти одновременно шведские химики П.Клеве и Н.Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г.Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э.Резерфорд и Т.Ройдс установили, что a -частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия.

После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. Пользуясь периодическим законом и методом Менделеева, было определено количество неизвестных благородных газов и их свойства, в частности их атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов.

Вначале Рамзай и его сотрудники занялись минералами, природными водами, даже метеоритами. Результаты анализов неизменно оказывались отрицательными. Между тем—теперь мы это знаем—новый газ в них был. Но методами, существовавшими в конце прошлого века, эти «микроследы» не улавливались. Затем исследователи обратились к воздуху.

Всего за четыре последующих года было открыто четыре новых элемента, при этом неон, криптон и ксенон были выделены из воздуха.

Воздух, очищенный предварительно от углекислоты и влаги, сжижали, а затем начинали медленно испарять. Сначала «летят» более легкие газы. После испарения основной массы воздуха рассортировывают оставшиеся тяжелые инертные газы. Затем, полученные фракции исследовали. Одним из методов поиска был спектральный анализ: газ помещали в разрядную трубку, подключали ток и по линиям спектра определяли «кто есть кто».

Когда в разрядную трубку поместили первую, самую легкую и низкокипящую фракцию воздуха, то в спектре наряду с известными линиями азота, гелия и аргона были обнаружены новые линии, из них особенно яркими были красные и оранжевые. Они придавали свету в трубке огненную окраску. В момент, когда Рамзай наблюдал спектр только что полученного газа, в лабораторию вошел его двенадцатилетний сын, успевший стать «болельщиком» отцовых работ. Увидев необычное свечение, он воскликнул: «new one!» Так возникло название газа «неон», по-древнегречески значит «новый».

После того как были открыты гелий, неон и аргон, завершающие три первых периода таблицы Менделеева, уже не вызывало сомнений, что четвёртый, пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м3 воздуха 9, 3 л аргона и всего лишь 0, 08 мл ксенона. Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон (“скрытый”). Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента! Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу.

Заслуга открытия высшего представителя инертных газов принадлежит тому же Рамзаю. При помощи весьма тонких технических приёмов он доказал, что радиоактивное истечение из радия – эманация радия – представляет собой газ, подчиняющийся всем законам обычных газов, химически инертный и обладающий характерным спектром. Его молекулярный вес – около 220 – был Рамзаем измерен по скорости диффузии. Если предположить, что ядро атома эманации радия – это остаток ядра радия после выбрасывания из него ядра атома гелия - a-частицы, то заряд его должен быть равен 88-2=86, т.е. новый элемент должен действительно быть инертным газом с атомным весом 226-4=222.

Таким образом, после блестящих экспериментов 16 марта 1900 г. в Лондоне произошла встреча Менделеева и Рамзая, на которой было официально решено включить в периодическую систему новую группу химических элементов.

Аргон

История открытия Аргона

В 1785 г. английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин...

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически.

Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную – почти процент!

Кстати, именно в этот день и час, 13 августа 1894 г., аргон и получил свое имя, которое в переводе с греческого значит «недеятельный». Его предложил председательствовавший на собрании доктор Медан.

Между тем нет ничего удивительного в том, что аргон так долго ускользал от ученых. Ведь в природе он себя решительно ничем не проявлял! Напрашивается параллель с ядерной энергией: говоря о трудностях ее выявления, А. Эйнштейн заметил, что нелегко распознать богача, если он не тратит своих денег...

mirznanii.com

Где применяют газ аргон?

Аргон представляет собой одноатомный инертный газ, он не имеет вкуса, запаха и цвета. А в периодической таблице Менделеева порядковый номер аргона восемнадцатый. Стоит сказать, что этот газ в природных условиях распространен не в соединениях химического характера, а в свободном виде. Воздух нашей планеты содержит в себе 0,95 % аргона. Кстати, этот газ есть в морской воде и земной коре.

Primenenie-argona

Аргон впервые был открыт в 1882 году Джоном Рэлеем, знаменитым английским физиком. Благодаря опытам и научным экспериментам Рэлей обнаружил,  что переработанный литр азота более увесист, чем тот же литр вещества, полученного после распада азотистого соединения.

Опубликованное открытие позволило выдвинуть гипотезы о том, что имеются существенные разницы о величинах плотности газа, полученного двумя совершенно разными способами. Физики предположили что азот, выделившийся из воздуха, имеет в себе неизвестный газ с более высокой плотностью. Опыты продолжились, и позже был выделен аргон. Это самый инертный из газов, известных в девятнадцатом веке. В 1894 году учеными был сделан официальный доклад об аргоне и его свойствах.

Свойства аргона

Аргон является одноатомным газом. Он не имеет запаха, лишен цвета и вкуса. В стандартных атмосферных условиях плотность аргона составляет 1, 7839  кг/ м3. Примерно в ста миллилитрах обычной воды  может раствориться около трех миллилитров аргона.

Температура кипения газа составляет минус 185 градусов по Цельсию, а температура плавления  равна 189 градусам. У аргона имеется два химических соединения (HArF и CU(Ar)O). Эти соединения получаются при низкой минусовой температуре. Синтезируют аргон при помощи процедуры разделения воздуха на азот и кислород.

Применение газа

Аргон стоит довольно дешево и при этом он очень востребован в разнообразных промышленных сферах. Например, этот газ имеется в обычных лампах накаливания. Когда-то давно для этих целей использовался азот. Этот газ используется также в металлургической промышленности и в подобных смежных отраслях.

Плюс использования данного газа заключается в том, что он помогает не допустить вредный контакт металла с воздухом. Аргон используется в медицине. Он инертен, и это позволяет очищать инструменты, им также обрабатывают гидрокостюмы и используют как пропеллент для обычных аэрозольных упаковок.

В нашей компании вы можете купить аргон в баллонах с доставкой или самовывозом.

Меры безопасности

Аргон не взрывоопасен и не токсичен для человека. Но его высокая концентрация в воздухе может нанести вред человеку, так как может начаться кислородное голодание мозга, сопровождающееся потерей сознания и резкими головокружениями. Хоть аргон и не горючее вещество, но обращаться с ним надо аккуратно, так как при его нагревании повышается и его давление.

где применяется аргон

Контакт с жидкостью, содержащий аргон может вызвать серьезное обморожение конечностей. А при попадании аргона в глаза наступает потеря зрения, и появляются ожоги сетчатки. Поэтому при работе с аргоном следует обязательно носить защитную спецодежду и респираторы.

Следует помнить и о том, что аргон тяжелее воздуха в своем газообразном состоянии. И утечка газа из баллона может серьезно повлиять на физическое состояние человека. Обычно в промышленности при работе с аргоном используется шланговый противогаз или изолирующий прибор. Внимательно отслеживается уровень аргона в окружающем воздухе. По всем нормативам кислорода в помещении должно быть не менее девятнадцати процентов.

Применение аргона в производстве

kriogenservis.ru

Аргон

Общие сведения об открытиях благородных газов

 К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они не похожи ни на какие другие элементы и в периодической системе располагаются между типичными металлами и неметаллами.

История открытия инертных газов представляет большой интерес: во-первых, как триумф введённых Ломоносовым количественных методов химии(открытие аргона), а во-вторых, как триумф теоретического предвидения (открытие остальных инертных газов), опирающегося на величайшее обобщение химии – периодический закон Менделеева.

Открытие физиком Рэлеем и химиком Рамзаем первого благородного газа – аргона – произошло в то время, когда построение периодической системы казалось завершённым и в ней оставалось лишь несколько пустых клеток.

Ещё 1785 году английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин...

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически. “Воздух при помощи раскалённой меди был лишён своего кислорода и затем нагрет с кусочками магния в трубочке. После того как значительное количество азота было поглощено магнием, была определена плотность остатка. Плотность оказалась в 15 раз больше плотности водорода, тогда как плотность азота только в 14 раз больше её. Эта плотность возрастала ещё по мере дальнейшего поглощения азота, пока не достигла 18. Этим было доказано, что воздух содержит газ, плотность которого больше плотности азота… Я получил 100 см3 этого вещества и нашёл его плотность равной 19,9. Оно оказалось одноатомным газом.” Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную - почти процент! Кстати, именно в этот день и час, 13 августа 1894 года, аргон и получил свое имя, которое в переводе с греческого значит «недеятельный».

Гелий впервые был идентифицирован как химический элемент в 1868 П.Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж.Локьер и П.Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э.Франкленд назвали новый элемент гелием от греч. «гелиос», что означает солнце. В то время не знали, что гелий – инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У.Рамзай и почти одновременно шведские химики П.Клеве и Н.Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г.Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э.Резерфорд и Т.Ройдс установили, что a-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия.

После этого открытия Рамзай пришёл к выводу, что существует целая группа химических элементов, которая располагается в периодической системе между щелочными металлами и галогенами. Пользуясь периодическим законом и методом Менделеева, было определено количество неизвестных благородных газов и их свойства, в частности их атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов.

Вначале Рамзай и его сотрудники занялись минералами, природными водами, даже метеоритами. Результаты анализов неизменно оказывались отрицательными. Между тем—теперь мы это знаем—новый газ в них был. Но методами, существовавшими в конце прошлого века, эти «микроследы» не улавливались. Затем исследователи обратились к воздуху.

Всего за четыре последующих года было открыто четыре новых элемента, при этом  неон, криптон и ксенон были выделены из воздуха.

Воздух, очищенный предварительно от углекислоты и влаги, сжижали, а затем начинали медленно испарять. Сначала «летят» более легкие газы. После испарения основной массы воздуха рассортировывают оставшиеся тяжелые инертные газы. Затем, полученные фракции исследовали. Одним из методов поиска был спектральный анализ: газ помещали в разрядную трубку, подключали ток и по линиям спектра определяли «кто есть кто».

Когда в разрядную трубку поместили первую, самую легкую и низкокипящую фракцию воздуха, то в спектре наряду с известными линиями азота, гелия и аргона были обнаружены новые линии, из них особенно яркими были красные и оранжевые. Они придавали свету в трубке огненную окраску. В момент, когда Рамзай наблюдал спектр только что полученного газа, в лабораторию вошел его двенадцатилетний сын, успевший стать «болельщиком» отцовых работ. Увидев необычное свечение, он воскликнул: «new one!» Так возникло название газа «неон», по-древнегречески значит «новый».

После того как были открыты гелий, неон и аргон, завершающие три первых периода таблицы Менделеева, уже не вызывало сомнений, что четвёртый, пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м3 воздуха 9, 3 л аргона и всего лишь 0, 08 мл ксенона. Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон (“скрытый”). Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента! Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу.  

Заслуга открытия высшего представителя инертных газов принадлежит тому же Рамзаю. При помощи весьма тонких технических приёмов он доказал, что радиоактивное истечение из радия – эманация радия – представляет собой газ, подчиняющийся всем законам обычных газов, химически инертный и обладающий характерным спектром. Его молекулярный вес – около 220 – был Рамзаем измерен по скорости диффузии. Если предположить, что ядро атома эманации радия – это остаток ядра радия после выбрасывания из него ядра атома гелия - a-частицы, то заряд его должен быть равен 88-2=86, т.е. новый элемент должен действительно быть  инертным газом с атомным весом 226-4=222.

Таким образом, после блестящих экспериментов 16 марта 1900 г. в Лондоне произошла встреча Менделеева и Рамзая, на которой было официально решено включить в периодическую систему новую группу химических элементов.

 

Аргон

 

История открытия Аргона

В 1785 г. английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин...

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически.

Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную – почти процент!

Кстати, именно в этот день и час, 13 августа 1894 г., аргон и получил свое имя, которое в переводе с греческого значит «недеятельный». Его предложил председательствовавший на собрании доктор Медан.

Между тем нет ничего удивительного в том, что аргон так долго ускользал от ученых. Ведь в природе он себя решительно ничем не проявлял! Напрашивается параллель с ядерной энергией: говоря о трудностях ее выявления, А. Эйнштейн заметил, что нелегко распознать богача, если он не тратит своих денег...

Скепсис ученых был быстро развеян экспериментальной проверкой и установлением физических констант аргона. Но не обошлось без моральных издержек: расстроенный нападками коллег (главным образом химиков) Рэлей оставил изучение аргона и химию вообще и сосредоточил свои интересы на физических проблемах. Большой ученый, он и в физике достиг выдающихся результатов, за что в 1904 г. был удостоен Нобелевской премии. Тогда в Стокгольме он вновь встретился с Рамзаем, который в тот же день получал Нобелевскую премию за открытие и исследование благородных газов, в том числе и аргона.

Обобщение истории открытия 

Аргон был открыт как инертный газ в атмосфере в 1894 Дж.Рэлеем, который обнаружил, что атмосферный азот на 0,5% тяжелее, чем полученный химическим путем. Разница объяснялась присутствием ничтожного количества более тяжелых инертных газов, преимущественно аргона. Этот элемент был первым из инертных газов, обнаруженных в природе на нашей планете. Содержание аргона в атмосфере составляет 0,93%(об.), причем его несколько больше над поверхностью больших водоемов, чем над сушей, так как азот и кислород более растворимы в воде. В электротехнической промышленности ежемесячно расходуется несколько тысяч кубических метров аргона для создания инертной среды в лампах накаливания: аргоновая среда позволяет снизить скорость испарения вольфрамовой нити и предотвращает ее окисление.

 

Строение Аргона

Ar 1S2 2S2 2P6 3S2 3P6  

10 электронов

18 протонов

22 нейтрона

Физические свойства

Общие свойства инертных газов

Все благородные газы– бесцветные одноатомные газ без цвета и запаха

обладают более высокой электропроводностью по сравнению с другими газами и при прохождении через них тока ярко светятсяНасыщенный характер атомных молекул инертных газов сказывается и в том, что инертные газы имеют более низкие точки сжижения и замерзания, чем другие газы с тем же молекулярным весом.

 

Из подгруппы тяжелых инертных газов аргон самый легкий. Он тяжелее воздуха в 1,38 раза. Жидкостью становится при – 185,9°C, затвердевает при – 189,4°C (в условиях нормального давления). В отличие от гелия и неона, он довольно хорошо адсорбируется на поверхностях твердых тел и растворяется в воде (3,29 см3 в 100 г воды при 20°C). Еще лучше растворяется аргон во многих органических жидкостях. Зато он практически нерастворим в металлах и не диффундирует сквозь них.

Как все инертные газы, аргон диамагнитен. Это значит, что его магнитная восприимчивость отрицательна, он оказывает большее противодействие магнитным силовым линиям, чем пустота. Это свойство аргона (как и многие другие) объясняется «замкнутостью» электронных оболочек его атомов.

Под действием электрического тока аргон ярко светится, сине-голубое свечение аргона широко используется в светотехнике.

Теперь о влиянии аргона на живой организм. При вдыхании смеси из 69% Ar, 11% азота и 20% кислорода под давлением 4 атм возникают явления наркоза, которые выражены гораздо сильнее, чем при вдыхании воздуха под тем же давлением. Наркоз мгновенно исчезает после прекращения подачи аргона. Причина – в неполярности молекул аргона, повышенное же давление усиливает растворимость аргона в нервных тканях.

Биологи нашли, что аргон благоприятствует росту растений. Даже в атмосфере чистого аргона семена риса, кукурузы, огурцов и ржи выкинули ростки. Лук, морковь и салат хорошо прорастают в атмосфере, состоящей из 98% аргона и только 2% кислорода.

Химические свойства

Химическая инертность аргона (как и других газов этой группы) и одноатомность его молекул объясняются прежде всего предельной насыщенностью электронных оболочек. Тем не менее разговор о химии аргона сегодня не беспредметен.

Есть основания считать, что исключительно нестойкое соединение Hg – Ar, образующееся в электрическом разряде, – это подлинно химическое (валентное) соединение. Не исключено, что будут получены валентные соединения аргона с фтором и кислородом, которые, скорее всего, будут неустойчивыми, Как нестойки и даже взрывоопасны окислы ксенона – газа, более тяжелого и явно более склонного к химическим реакциям, чем аргон.

Еще в конце прошлого века француз Вийяр, сжимая аргон под водой при 0°C, получил кристаллогидрат состава Аr · 6Н2О, а в 20...30-х годах XX столетия Б.А. Никитиным, Р.А. Франкраном и другими исследователями при повышенных давлениях и низких температурах были получены кристаллические клатратные соединения аргона с h3S, SO2, галогеноводородами, фенолами и некоторыми другими веществами. В 1976 г. появилось сообщение о синтезе гидрида аргона, но пока еще трудно сказать, является ли этот гидрид истинно химическим, валентным соединением.

Вот пока и все успехи химии...

 Аргон на Земле и во Вселенной

На Земле аргона намного больше, чем всех прочих элементов его группы, вместе взятых. Его среднее содержание в земной коре (кларк) в 14 раз больше, чем гелия, и в 57 раз больше, чем неона. Есть аргон и в воде, до 0,3 см3 в литре морской и до 0,55 см3 в литре пресной воды. Любопытно, что в воздухе плавательного пузыря рыб аргона находят больше, чем в атмосферном воздухе. Это потому, что в воде аргон растворим лучше, чем азот...

Главное «хранилище» земного аргона – атмосфера. Его в ней (по весу) 1,286%, причем 99,6% атмосферного аргона – это самый тяжелый изотоп – аргон-40. Еще больше доля этого изотопа в аргоне земной коры. Между тем у подавляющего большинства легких элементов картина обратная – преобладают легкие изотопы.

Причина этой аномалии обнаружена в 1943 г. В земной коре находится мощный источник аргона-40 – радиоактивный изотоп калия 40К. Этого изотопа на первый взгляд в недрах немного – всего 0,0119% от общего содержания калия. Однако абсолютное количество калия-40 велико, поскольку калий – один из самых распространенных на нашей планете элементов. В каждой тонне изверженных пород 3,1 г калия-40.

Радиоактивный распад атомных ядер калия-40 идет одновременно двумя путями. Примерно 88% калия-40 подвергается бета распаду и превращается в кальций-40. Но в 12 случаях из 100 (в среднем) ядра калия-40 не излучают, а, наоборот, захватывают по одному электрону с ближайшей к ядру К-орбиты («К-захват»). Захваченный электрон соединяется с протоном – образуется новый нейтрон в ядре и излучается нейтрино. Атомный номер элемента уменьшается на единицу, а масса ядра остается практически неизменной. Так калий превращается в аргон.

Период полураспада 40К достаточно велик – 1,3 млрд лет. Поэтому процесс образования 40Аr в недрах Земли будет продолжаться еще долго, очень долго. Поэтому, хотя и чрезвычайно медленно, но неуклонно будет возрастать содержание аргона в земной коре и атмосфере, куда аргон «выдыхается» литосферой в результате вулканических процессов, выветривания и перекристаллизации горных пород, а также водными источниками.

Правда, за время существования Земли запас радиоактивного калия основательно истощился – он стал в 10 раз меньше (если возраст Земли считать равным 4,5 млрд лет.).

Соотношение изотопов 40Аr: 40К и 40Ar: 36Аr в горных породах легло в основу аргонного метода определения абсолютного возраста минералов. Очевидно, чем больше эти отношения, тем древнее порода. Аргонный метод считается наиболее надежным для определения возраста изверженных пород и большинства калийных минералов. За разработку этого метода профессор Э.К. Герлинг в 1963 году удостоен Ленинской премии.

Итак, весь или почти весь аргон-40 произошел на Земле от калия-40. Поэтому тяжелый изотоп и доминирует в земном аргоне.

Этим фактором объясняется, кстати, одна из аномалий периодической системы. Вопреки первоначальному принципу ее построения – принципу атомных весов – аргон поставлен в таблице впереди калия. Если бы в аргоне, как и в соседних элементах, преобладали легкие изотопы (как это, по-видимому, имеет место в космосе), то атомный вес аргона был бы на две-три единицы меньше...

Теперь о легких изотопах.

Откуда берутся 36Аr и 38Аr? Не исключено, что какая-то часть этих атомов реликтового происхождения, т.е. часть легкого аргона пришла в земную атмосферу из космоса при формировании нашей планеты и ее атмосферы. Но большая часть легких изотопов аргона родилась на Земле в результате ядерных процессов.

Вероятно, еще не все такие процессы обнаружены. Скорее всего некоторые из них давно прекратились, так как исчерпались короткоживущие атомы-«родители», но есть и поныне протекающие ядерные процессы, в которых рождаются аргон-36 и аргон-38. Это бета-распад хлора-36, обстрел альфа-частицами (в урановых минералах) серы-33 и хлора-35:

3617Cl β–→ 3618Ar + 0–1e + ν.

3316S + 42He → 3618Ar + 10n.

3517Cl + 42He → 3818Ar + 10n + 0+1e.

В материи Вселенной аргон представлен еще обильнее, чем на нашей планете. Особенно много его в веществе горячих звезд и планетарных туманностей. Подсчитано, что аргона в космосе больше, чем хлора, фосфора, кальция, калия – элементов, весьма распространенных на Земле.

В космическом аргоне главенствуют изотопы 36Аr и 38Аr, аргона-40 во Вселенной очень мало. На это указывает масс-спектральный анализ аргона из метеоритов. В том же убеждают подсчеты распространенности калия. Оказывается, в космосе калия примерно в 50 тыс. раз меньше, чем аргона, в то время как на Земле их соотношение явно в пользу калия – 660 : 1. А раз мало калия, то откуда же взяться аргону-40?!

 

Применение

Все шире применяется дуговая электросварка в среде аргона. В аргонной струе можно сваривать тонкостенные изделия и металлы, которые прежде считались трудносвариваемыми. Не будет преувеличением сказать, что электрическая дуга в аргонной атмосфере внесла переворот в технику резки металлов. Процесс намного ускорился, появилась возможность резать толстые листы самых тугоплавких металлов. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000—6000° С. К тому же эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса

 

Как добывают аргон

Земная атмосфера содержит 66 · 1013 т аргона. Этот источник аргона неисчерпаем, тем более что практически весь аргон рано или поздно возвращается в атмосферу, поскольку при использовании он не претерпевает никаких физических или химических изменений. Исключение составляют весьма незначительные количества изотопов аргона, расходуемые на получение в ядерных реакциях новых элементов и изотопов.

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород – из пространства над конденсатором.

Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Состав аргонной фракции: 10...12% аргона, до 0,5% азота, остальное – кислород. В «аргонной» колонне, присоединенной к основному аппарату, получают аргон с примесью 3...10% кислорода и 3...5% азота. Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией). В промышленных масштабах ныне получают аргон до 99,99%-ной чистоты. Аргон извлекают также из отходов аммиачного производства – из азота, оставшегося после того, как большую его часть связали водородом.

Аргон хранят и транспортируют в баллонах емкостью 40 л, окрашенных в серый цвет с зеленой полосой и зеленой надписью. Давление в них 150 атм. Более экономична перевозка сжиженного аргона, для чего используют сосуды Дюара и специальные цистерны.

Искусственные радиоизотопы аргона получены при облучении некоторых стабильных и радиоактивных изотопов (37Cl, 36Аr, 40Аr, 40Са) протонами и дейтонами, а также при облучении нейтронами продуктов, образовавшихся в ядерных реакторах при распаде урана. Изотопы 37Аr и 41Аr используются как радиоактивные индикаторы: первый – в медицине и фармакологии, второй – при исследовании газовых потоков, эффективности спетом вентиляции и в разнообразных научных исследованиях. Но, конечно, не эти применения аргона самые важные.

 

 

 

 

 

 

 

 

msx.okis.ru

АРГОН

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) - 185,9°C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20°C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Пока известны только 2 химических соединение аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Аr, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[1]. Вероятно существованияесоединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Земная атмосфера содержит 66 • 1013 т аргона. Этот источник аргона неисчерпаем, тем более что практически весь аргон рано или поздно возвращается в атмосферу, поскольку при использовании он не претерпевает никаких физических или химических изменений. Исключение составляют весьма незначительные количества изотопов аргона, расходуемые на получение в ядерных реакциях новых элементов и изотопов.

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород – из пространства над конденсатором.

Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну.

Состав аргонной фракции: 10...12% аргона, до 0,5% азота, остальное – кислород. В «аргонной» колонне, присоединенной к основному аппарату, получают аргон с примесью 3...10% кислорода и 3...5% азота.

Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией).

В промышленных масштабах ныне получают аргон до 99,99%-ной чистоты. Аргон извлекают также из отходов аммиачного производства – из азота, оставшегося после того, как большую его часть связали водородом.

Аргон хранят и транспортируют в баллонах емкостью 40 л, окрашенных в серый цвет с зеленой полосой и зеленой надписью. Давление в них 150 атм. Более экономична перевозка сжиженного аргона, для чего используют сосуды Дюара и специальные цистерны. Искусственные радиоизотопы аргона получены при облучении некоторых стабильных и радиоактивных изотопов (37Cl, 36Аr, 40Аr, 40Са) протонами и дейтонами, а также при облучении нейтронами продуктов, образовавшихся в ядерных реакторах при распаде урана. Изотопы 37Аr и 41Аr используются как радиоактивные индикаторы: первый – в медицине и фармакологии, второй – при исследовании газовых потоков, эффективности спетом вентиляции и в разнообразных научных исследованиях. Но, конечно, не эти применения аргона самые важные.

Земная атмосфера содержит 66 1013 тонн аргона. Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Состав аргонной фракции: 10-12% аргона, до 0,5% азота, остальное - кислород. В "аргонной" колонне, присоединенной к основному аппарату, получают аргон с примесью 3-10% кислорода и 3-5% азота. Дальше следует очистка "сырого" аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией).

Как самый доступный и относительно дешевый инертный газ аргон стал продуктом массового производства, особенно в последние десятилетия. Наибольшая часть получаемого аргона идет в металлургию, металлообработку и некоторые смежные с ними отрасли промышленности.

В среде аргона ведут процессы, при которых нужно исключить контакт расплавленного металла с кислородом, азотом, углекислотой и влагой воздуха. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов. В атмосфере аргона обрабатывают плутоний, получают некоторые соединения хрома, титана, ванадия и других элементов (сильные восстановители).

Продувкой аргона через жидкую сталь из нее удаляют газовые включения. Это улучшает свойства металла. Все шире применяется дуговая электросварка в среде аргона. В аргонной струе можно сваривать тонкостенные изделия и металлы, которые прежде считались трудносвариваемыми.

Электрическая дуга в аргонной атмосфере внесла переворот в технику резки металлов. Процесс намного ускорился, появилась возможность резать толстые листы самых тугоплавких металлов. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000°С. К тому же, эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.

Стремление использовать свойства и возможности сверхчистых материалов - одна из тенденций современной техники. Для сверхчистоты нужны инертные защитные среды, разумеется, тоже чистые; аргон - самый дешевый и доступный из благородных газов.

Показатели Значение
Объемная доля аргона, в % 99.998
Объемная доля кислорода, в % 0.0002
Объемная доля азота, в % 0.001
Объемная доля водяного пара, в % 0.0003
Объемная доля двуокиси углерода, в % 0.00002
Объемная доля метана, в % 0.0001
Объемная доля водорода, в % 0.0002

Аргон относится к инертным газам, которые химически не взаимодействуют с металлом и не растворяются в нем. Инертные газы применяют для сварки химически активных металлов (титан, алюминий, магний и др.), а также во всех случаях, когда необходимо получать сварные швы, однородные по составу с основным и присадочным металлом (высоколегированные стали и др.). Инертные газы обеспечивают защиту дуги и свариваемого металла, не оказывая на него металлургического воздействия.

Аргон газообразный чистый используется трех сортов: высшего, первого и второго. Содержание аргона соответственно 99,99 %; 99,98 %; и 99,95 %. Примеси – кислород (<0,005), азот (< 0,004) , влага(<0,003). Аргон хранится и поставляется в баллонах вместимостью 40л, под давлением 150 ? 98,06 кПа. Цвет окраски баллону присвоен серый, надпись «Аргон чистый» зеленого цвета.

Аргонодуговая сварка – дуговая сварка, при которой в качестве защитного газа используется аргон . Применяют аргонодуговую сварку неплавящимся вольфрамовым и плавящимся электродами. Сварка может быть ручной и автоматической. Аргонодуговая сварка вольфрамовым электродом предназначена для сваривания швов стыковых, тавровых и угловых соединений. Сварка плавящимся электродом применяется для сварки цветных металлов (Al, Mg , Cu ,Ti и их сплавов) и легированных сталей.

Аргон используется в плазменной сварке как плазмообразующий газ. При микроплазменной сварке большинство металлов сваривают в непрерывном или импульсном режимах дугой прямой полярности, горящей между вольфрамовым электродом плазмотрона и изделием в струе плазмообразующего инертного газа – (чаще всего) аргона.

Аргонодуговая сварка

Дугoвaя cвapкa, пpи кoтopoй в кaчecтвe зaщитнoгo гaзa иcпoльзуeтcя apгoн.

ГОСТ 2601-84 Свapкa мeтaллoв. Тepмины и oпpeдeлeния ocнoвныx пoнятий (c Измeнeниями N 1, 2)

ISO 14555:1998 Свapкa. Дугoвaя пpивapкa шпилeк из мeтaлличecкиx мaтepиaлoв

www.gas-weld.ru

Газ аргон

&nbsp&nbsp&nbsp&nbsp

Аргон - газообразный химический элемент, который составляет почти 1% от атмосферы Земли. Среди инертных газов, как правило, он считается наиболее распространенным, и он иногда используется для замены других благородных газов в ситуациях, когда инертный газ необходим. Относительно нереактивный газ имеет ряд применений в промышленных целях, и его изотопы используются также в радиоуглеродном датировании очень старых находок. Коммерчески, этот элемент извлекается путем фракционной перегонки, которая включает в себя охлаждающий воздух, пока он не сжижается, а его затем нагревают, тем самым заставляя отдельные газы выпадать в осадок. Аргон, как правило, относительно дешевый, так как он является побочным продуктом. Он часто используется в освещении, часто в сочетании с другими благородными газами, и он также используется в дуговой сварке – аргонная сварка. Как и другие благородные газы, такие как гелий, неон и криптон, аргон первоначально полностью инертный. Но на самом деле, он будет реагировать в определенных ситуациях, образуя несколько соединений, но в противном случае он абсолютно стабилен. Этот газ не имеет цвета, запаха и вкуса, в чистом виде, он не токсичен, хотя газ может действовать как удушающий агент, если он вытесняет кислород в комнате. На периодической таблице элементов, аргон идентифицируется символом Ar, и газ имеет атомный номер 18. Этот газ был обнаружен в 1894 году сэром Уильямом Рамзаем и лордом Рэлем. Мужчины ранее заметили, что образец азота из воздуха оказался тяжелее, чем азот извлеченный из других источников, и они предположили, что азот может фактически быть смешаны с другими газов. Эксперименты доказали эту теорию, и полученный газ они назвали аргоном, он был назван от греческого слова Argos, или “ленивый”, в ссылку на низкую реакционную способность газа. Позже стало ясно, что образец воздуха, которому они дали это имя был на самом деле выборкой из нескольких благородных газов. Рамсею позже удалось извлечь чистый аргон. Он также выполнил исследования по другим благородным газам, подтверждающие выводы других ученых и сделал несколько новых открытий. В 1904 году, исследователи получил Нобелевскую премию по химии за работы по благородным газам.

Ещё новости:

  1. Жидкий азот
  2. Рідкий азот
  3. Газ в пищеварительном тракте
  4. Промышленный бронхит
  5. Что такое гелий?

4medical.in

Для чего нужен защитный газ при сварке

Наиболее распространенным газом при сварке является аргон. В некоторых случаях используют гелий, однако аргон занимает почетное первое место в рейтинге использования защитных газов при аргонодуговом сваривании.

Аргон является инертным газом, который в обычных условиях не имеет цвета, запаха и вкуса. Он тяжелее воздуха приблизительно в 1,38 раза. Он считается наиболее доступным и сравнительно недорогим газом для защиты сварочного процесса.

В промышленности основным способом получения аргона является метод низкотемпературной ректификации воздуха с получением кислорода и азота, попутно извлекая аргон. Также аргон получается в качестве побочного эффекта при добыче аммиака. Газообразный аргон хранят в транспортируют в специальных стальных баллонах. Такие баллоны окрашены в серый цвет и на них нанесена надпись «Аргон чистый» зеленого цвета.

Аргон является не взрывоопасным и не токсичным газом, но при высокой концентрации в воздухе может быть опасным для жизни человека. Если доля кислорода в воздухе снижается до 19-и и ниже процентов, то появляется кислородная недостаточность, что вызывает удушье, а при продолжительном нахождении в такой атмосфере может вызвать потерю сознания и в некоторых случаях смерть.

Аргон используется в качестве инертного газа для защиты сварочного процесса при дуговой сварке. Он является основой защиты среды при сваривании алюминия, титана активных и редких металлов. Аргон нередко применяется при плазменной сварке как плазмообразующий газ. Иногда его используют при лазерной сварке как плазмоподавляющий и защитный газ.

В зависимости от требуемых объемов использования аргона применяются несколько схем обеспечения ним. Если объем при использовании не превышает 10 000 кубических метров на грамм, то его доставляют в баллонах. Если же объем превышает 10 000 кубических метров, то его перевозят в жидком состоянии в специально отведенных для этого емкостях. Для этого используется автомобильный и железнодорожный транспорт. Чтобы транспортировать аргон по железной дороге используются специальные цистерны 8Г-513 или же 15-558. Для перемещения по дорогам используются газовые емкости типа ЦТК объемом от 0,5 до 10 кубических метров. В таких же емкостях может транспортироваться азот и кислород.

Защитный газ аргон при выходе из сопла горелки попадает в зону сварки и вытесняет воздух из этой зоны. Сварочная проволока при сваривании подается роликами вниз, которые вращаются двигателем подающего механизма. Подвод сварочного тока к проволоке осуществляется с помощью скользящего контакта.

Если учитывать, что защитный газ активен и может вступать во взаимодействие с расплавленным металлом, то полуавтоматическое сваривание в углекислом газе имеет много преимуществ, что позволяет производить сварочные швы высокого качества при минимальных затратах, несмотря на то, что некоторые виды сварки, например сварка алюминия, не такие и простые.

3g-svarka.ru

Аргон газообразный, аргон жидкий, аргон в баллонах

Достоинства газообразного аргона

В атмосфере содержится почти 66*1013 тонны чистого аргона, считающегося неисчерпаемым. К тому же в силу определенных обстоятельств аргон газообразный все равно возвращается в атмосферу. Будучи доступным и недорогим химическим элементом он претендует на первое место по объему среди всей плеяды благородных газов. Электровакуумная техника стала основным потребителем этого газа, предоставляя в распоряжение потребителей ежегодно миллиарды ламп, в которых аргон газообразный является основным инертным наполнителем. Их полость заполнена смесью аргона с азотом в соотношении 7:3. Подобный подход помог повысить эффективность ламп, в которых вначале использовался чистый газообразный аргон. Сегодня аргон газообразный является базисным компонентом газовых смесей, используемых в сварочных работах, поэтому аргон в баллонах при сварочных работах так востребован.

Преимущества сварочных работ, при которых используется аргон газообразный в баллонах:

  • рост количества электродного металла/единицу времени;
  • минимизация потерь металла, тратящегося на разбрызгивание;
  • снижение коэффициента набрызгивания в районе самого шва;
  • оптимизация процесса сварки;
  • снижение количества неровностей и инородных включений;
  • стабилизация точечного термического влияния и уменьшение негативного влияния на целостность конструкции;
  • экономия на электроэнергии.

Применение аргона жидкого.

  • Технически аргон жидкий получается в процессе разгона воздуха на кислород и чистый азот в качестве побочного продукта. На заводе «Уралтехгаз» аргон в баллонах выпускают 99,998% чистоты. 
  • Промышленность и металлургия. Используется аргон жидкий, как в процессах выплавки металла с уникальными свойствами, так и для удаления газовых включений и получения соединений металла, которые невозможно получить при нормальных условиях. Благодаря тому, что в этих процессах использовался аргон жидкий, можно говорить о том, что это положило начало новой эры в горнодобывающей промышленности.
  • Наука. Спектрометрический анализ сыпучих и дробленых материалов в лазерных установках стал возможен вместе с применением аргона.
  • Машиностроение. Толстостенная сварка легированной стали, дуговая электросварка, защита дуги при резке/сварке алюминиевых деталей – в каждом процессе аргон жидкий играет важную роль.
  • Химическая промышленность. Для получения различных веществ высокой степени чистоты аргон жидкий практически незаменим.

Предложение аргона в баллонах от завода «Линде Уралтехгаз»

Завод «Линде Уралтехгаз» предлагает сжиженный аргон в баллонах различной емкости. Доставка осуществляется в самые короткие сроки с соблюдением всех требований безопасности. Руководителям и техническим специалистам компаний следует понимать, что аргон в баллонах находится под давлением, поэтому такой груз должен транспортироваться с соблюдением мер безопасности. В тех случаях, когда у вас имеется специализированная техника, на которой можно перевозить аргон в баллонах, транспортировка может осуществляться своими силами. Однако специалисты «Уралтехгаз» настоятельно рекомендуют воспользоваться нашим предложением. Мы не только производим аргон жидкий, чистота которого блика к 100%, но и доставим аргон в баллонах в любую точку города быстро с соблюдением техники безопасности. Приобрести аргон в баллонах в компании «Уралтехгаз» быстро, выгодно и безопасно!

www.techgaz.ru