Газ аргон – химические свойства и сфера применения. Получение аргона в домашних условиях


Способы получения аргона | Сварка и сварщик

Как уже говорилось в статье «Аргон – самый ленивый газ», содержание аргона в воздухе довольно значительно, поэтому его добывают как побочный продукт, при получении кислорода и азота из воздуха методом низкотемпературной ректификации в специальных аппаратах.

1 - колонна высокого давления;2 - колонна низкого давления3 - промежуточный койденсатор-испаритель

Схема аппарата двойной ректификации воздуха

Аргон по летучести занимает промежуточное положение между азотом и кислородом - основными компонентами воздуха. Этим и объясняется специфическое поведение аргона при ректификации жидкого воздуха. Окончательное разделение жидкого воздуха на азот и кислород производится в колонне низкого давления воздухоразделительного аппарата. Дистиллятом этой колонны является газообразный азот, а нижним продуктом - газообразный или жидкий кислород.

В верхней части колонны низкого давления аргон выступает в роли тяжелолетучего (по сравнению с азотом) компонента, а в нижней части - легколетучего (по сравнению с кислородом). Этим объясняется существование в колонне низкого давления зон повышенной концентрации аргона в обеих секциях колонны - концентрационной (выше ввода жидкости из куба колонны высокого давления) и отгонной (ниже ввода). На распределение аргона по тарелкам ректификационной колонны низкого давления сильно влияет сопутствующий ему третий компонент - кислород. Содержание аргона в зоне повышенной концентрации верхней секции колонны возрастает по мере уменьшения содержания кислорода в дистилляте при неизменном составе продукционного кислорода (этого можно достичь увеличением числа тарелок в колонне).

Схематично процесс добычи аргона описывается следующим образом. Вначале воздух очищается от пыли и сжимается до сжижения. Жидкий воздух подвергается ректификации с целью разделения его на составные части. Получающаяся аргоно-азотно-кислородная смесь (сырой аргон) затем очищается от кислорода и азота. Разделение воздуха и попутное извлечение из него аргона в промышленном масштабе осуществляется путем сжижения и ректификации при низкой температуре. Жидкий кислород под давлением 101 кПа кипит при температуре -182,9°С, а жидкий азот - при температуре -195,8°С. Поэтому пары жидкого воздуха при кипении обогащаются легкокипящим азотом, температура кипения которого почти на 13°С ниже, чем у кислорода. Одновременно происходит обогащение кипящей жидкости кислородом. Благодаря этому, в ректификационной разделительной колонке, где непрерывно кипит жидкий воздух и конденсируются его пары, удается получить одновременно кислород (в нижней части) и азот - (в верхней части). Большая часть жидкого аргона, температура кипения которого -185,3°С, скапливается в средней части колонки, откуда в смеси с кислородом и азотом отводится (так называемая аргонная фракция) в специальную аргонную колонну, смонтированную вместе с воздухораспределительным аппаратом. Здесь аргонная фракция (содержащая 8-12% аргона, 0,2-0,3% азота, остальное - кислород) подвергается дополнительной ректификации и обогащается аргоном до 85-95% (остальные 15-5% составляет смесь азота и кислорода). Этот продукт называют сырым аргоном, из него на последующих этапах очистки получают чистый аргон.

1 - воздухоразделительный аппарат2 – аргонная колонка3 – переохладитель

Присоединение аргонной колонны к аппарату двойной ректификации воздуха

Сырой аргон от кислорода можно очищать несколькими способами. Один из них основан на каталитическом окислении водорода, содержащегося в сыром аргоне, при температуре 400-500° С. Вследствие тоге, что при этом способе продукты реакции смешиваются с очищенным аргоном, необходимо, чтобы они легко отделялись от него. Для этой цели применяется только электролитический водород, не содержащий примесей, загрязняющих аргон. Так как при этом способе очистки содержание кислорода не должно быть более 2-2,5%, в схеме предусмотрена циркуляция газа для разбавления сырого аргона очищенным газом, не содержащим кислорода. Циркуляция газа осуществляется с помощью газодувки.

Водяной пар, полученный в результате соединения водорода с кислородом в контактном аппарате, конденсируют в холодильнике и удаляют через влагоотделитель, после чего газ осушают. Полученная смесь аргона с азотом подвергается ректификации по схеме, которая аналогична применяемой при ректификации воздуха. При этом используется насос для жидкого аргона, что позволяет избежать загрязнения чистого аргона при его сжатии и заполнении баллонов. При помощи компрессора смесь аргона и азота сжимается и через ресивер подается в блок адсорбционной осушки, где из нее удаляются остатки влаги. После этою через теплообменник смесь поступает в ректификационную колонку, где охлаждается до температуры сжижения выходящими из колонки продуктами разделения - азотом и аргоном.

Для обеспечения условий ректификации и восполнения потерь холода в ректификационную колонку подают жидкий азот и парообразную кислородно-азотную смесь из основного воздухоразделительного аппарата. Чистый аргон собирается в нижней части колонки, а «отбросный» азот отводится в атмосферу из верхней части колонки через теплообменник.

Существуют и другие способы получения аргона, например при производстве синтетического аммиака. Его получают при синтезе азотно-водородной смеси в колонках. В продувочном газе содержится 10-19% аргона, и именно из этого газа его и извлекают. Считается, что аргон, выделенный при производстве аммиака, имеет более низкую себестоимость.

В любом случае качество газа зависит от совершенства систем очистки и от точности определения малых примесей азота, кислорода, водорода и паров воды в аргоне.

weldering.com

Аргон методы получения — Знаешь как

В воздухе аргона относительно много, но извлечь его оттуда и получить в чистом виде не так-то просто. Трудность состоит в том, что температура кипения аргона находится между температурами кипения азота и кислорода — ближе к последней, от которой она отстоит лишь на 2,7°. Отсюда следует, что при ректификации жидкого воздуха аргон распределяется между азотом и кислородом, в большем количестве присоединяясь к кислороду.

 

При испарении жидкого воздуха аргон, будучи более летучим, чем кислород, уходит следом за азотом. Поднимаясь вверх по колонне, он встречается со все более холодной жидкостью, конденсируется и стекает вниз. По высоте аппарата можно найти такой участок, где скапливается наибольшее количество аргона при наименьшей концентрации азота. Именно отсюда выгоднее всего отбирать газ для дальнейшего выделения аргона.

 

В аппаратах двухкратной ректификации таким участком является нижняя часть верхней колонны на границе между первой и второй третью ее высоты. Отсюда и отводится «аргонная фракция» воздушных газов, которая содержит 8—12% аргона и 0,2—0,5% азота (остальное составляет кислород).

 

Аргонную фракцию в свою очередь подвергают ректификации по тому же принципу, Что и воздух. Для этого к основному аппарату присоединена специальная аргонная колонна, имеющая конденсатор в верхней части . Здесь за счет охлаждения флегмой, подаваемой из нижней колонны воздухоразделительного аппарата .

в межтрубное пространство, большая часть кислорода конденсируется, и ее возвращают в основной процесс. Сырой аргон отбирают из-под крышки конденсатора аргонной колонны в виде пара, содержащего 75—95% аргона.

 

Для очистки сырого аргона в него вводят водород, на окисление которого в присутствии катализатора затрачивается содержащийся в аргоне кислород. Образующаяся вода конденсируется, а ее остатки удаляются при осушке аргона. По другому способу кислород связывают в окисел на поверхности меди при нагреве до 450—500° С. Несмотря на обилие аргона в атмосфере, он остается довольно дефицитным газом, так как еще не всюду, получая кислород и азот, попутно извлекают из воздуха инертные газы. Это объясняется технической сложностью их извлечения из воздуха и особенно их последующей очистки. Поэтому мысль специалистов направлена на поиски новых, более эффективных способов очистки.

 

Интересен метод очистки аргона от примесей путем адсорбции их на синтетических цеолитах — алюмосиликатах натрия или кальция. Размеры пор и каналов, соединяющих поры между собой и с поверхностью кристалла, у цеолитов очень однородны, и размеры входов в поры («окон») могут заданным образом изменяться с помощью обмена катионами, располагающимися у окон. Диаметр окон цеолита приближается к размерам малых молекул, поэтому в его поры проникают лишь кислородные молекулы и еще меньшие. Для молекул аргона вход в поры недоступен, и они беспрепятственно проходят через адсорбер. Десорбция примесей достигается нагреванием цеолита. Этим методом получается очень чистый аргон, содержащий лишь десятитысячные доли процента примесей.

 

Завершающей стадией очистки является отделение азота. Разность между температурами кипения партнеров смеси превышает в данном случае 10°, и разделение их посредством ректификации становится целесообразным. Все идет так же, как при основном процессе разделения воздуха. Чистый аргон собирается в нижней части колонны и отводится в жидком состоянии, а азот выбрасывают в атмосферу, использовав его холод в теплообменнике. Тонкую очистку производят с помощью металлического кальция.

 

Жидкий аргон испаряют, для чего он подается специальным насосом в теплообменник под давлением 165 ат, откуда накачивается в баллоны, окрашенные в серый цвет с зеленой полосой и зеленой надписью. Отечественная промышленность выпускает чистый аргон трех марок, в котором минимальные содержания аргона составляют 99,90; 99,96 и 99,99 об.%. Особо чистый аргон содержит не более 0,005% Не и 0,001% О2. Для аргона, как и для гелия, более экономична перевозка в жидком виде. Применяют сосуды Дьюара, такие же, как для жидкого воздуха, и специальные цистерны.

 

Аргон извлекают также из отходов азотно-туковых заводов — газов продувки, выводимых из системы синтеза аммиака: В них присутствует 5—16% аргона. На получение 1 т аммиака расходуется около 1000 м3 азота, содержащих десятки кубометров аргона. После синтеза аммиака из остатков извлекают аргон. Этим путем на заводах Лейна в Германии получается аргон несколько более дешевый, чем из воздуха.

 

 

Статья на тему Аргон методы получения

znaesh-kak.com

Аргон: применение, получение, история

Авторы:

сотрудники компании Спектральные линии аргона

Аналитические линии плазмообразующего газа (аргона) на фрагменте спектра образца углеродистой низколегированной стали

Аргон – элемент с атомной массой 39,944 и порядковым номером 18. Принадлежит к 8-ой группе главной подгруппы таблицы Менделеева, относится к благородным инертным одноатомным газам. Не обладает ни запахом, ни цветом, ни вкусом. Негорючий и невзрывоопасный.

История открытия Аргона

Впервые неизвестный до этого газ, при химических и физических экспериментах, обнаружил в 1785 году Генри Кавендиш — английский физик и химик. Но он не смог разгадать загадку и прекратил исследования. Позднее на записи Кавендиша обратил внимание Джеймс Максвелл.

И лишь спустя более ста лет, в 1894 году, химик Уильям Рамзай и физик Джон Уильям Стретт (Лорд Рэлей) сделали доклад об открытии нового элемента, который, за свою химическую неактивность, назвали аргоном. Это случилось в Оксфорде на собрании Британской ассоциации естествоиспытателей, физиков и химиков. Название нового газа произошло от греческого слова ἀργός, что в переводе означает — неактивный, медленный.

Спустя еще 10 лет, эти ученые получили Нобелевские премии за исследования газов, открытие аргона и других инертных газов в атмосфере.

Получение Аргона

Аргон — наиболее распространенный в воздухе инертный газ. В 1 м3 содержится примерно 0,09 см3 ксенона, 1,1 см3 криптона, 5,2 см3 гелия, 18,2 см3 неона, 9000 см3 аргона.

В атмосфере Земли аргон занимает третье место. На первом – азот, на втором - кислород. В процентном отношении это примерно 0,93% по объёму или 1.3% по массе. По этой причине он является самым легкодоступным и недорогим инертным газом.

Получение и промышленное производство этого газа происходит как выделение сопутствующего газа при добыче азота и кислорода из атмосферного воздуха. Наиболее простой метод — это глубокое охлаждение и ректификация с последующей доочисткой от примесей.

Кроме того, аргон получают при производстве аммиака. Доочистку аргона осуществляют по технологии гидрирования с платиновым катализатором или адсорбционным методом с использованием молекулярных сит или активного угля.

Применение Аргона

Основными потребителями аргона являются:

Металлургия. Применение аргона в современных технологических процессах выплавки стали — продувка расплава в ковше. Эта операция выполняет несколько функций: охлаждение металла, ускорение плавления вводимых в ковш лигатур и раскислителей, гомогенизация металла по химическому составу и температуре, очищение от неметаллических включений, образующихся от раскисляющих и легирующих добавок, углеродное раскисление металла и его обезуглероживание, удаление водорода и азота, ускорение десульфурации (удаление серы из расплава), вдувание раскисляющих и легирующих порошкообразных добавок.

В металлургии высококачественных сплавов аргон используется для защиты расплава от контакта с воздухом во время выплавки и разливки. Высокотемпературная обработка титана и его сплавов требует защитной аргоновой атмосферы. Незаменим аргон и в технологиях обработки таких редких металлов как цирконий, вольфрам, тантал, ниобий, бериллий, гафний и др.

Металлообрабатывающая промышленность. Основное использование аргона — создание защитной завесы при электродуговой (АРДЭС), контактной и лазерной сварке, термообработке. Аргон — плазмообразующий газ в установках сварки и резки активных, редких металлов, сплавов на их основе, например, алюминиевых и магниевых, нержавеющих, хромоникелевых, жаропрочных сплавов и легированных сталей.

Радиоэлектронная промышленность. Здесь аргон незаменим для создания инертной среды в установках плазменного напыления, заполнение колб электрических и люминесцентных ламп, электровакуумных приборов, газосветной рекламы. Например, сине-голубое свечение получается при заполнении трубок аргоном с парами ртути.

Пищевая промышленность. Благодаря своей химической нейтральности, аргон широко используют как пропеллтен («выталкивающий» газ) в аэрозольных упаковках, антифламинг (вещество снижающее образование пены) и «упаковочный» газ в пищевой промышленности.

Спектральный анализ и метрология. В данной сфере аргон наиболее часто используется как газ-носитель, инертная среда и плазмообразующий газ в контрольно-измерительных приборах, а также при производстве поверочных газовых смесей (ПГС) для различных газоанализаторов.

В данной сфере применения чистота аргона имеет ключевое значение. Даже при минимальных отклонениях качества аргона от соответствующих ГОСТов и ТУ, регламентированных для использования в конкретных приборах, изменяются условия работы и анализа, что приводит к серьезным искажениям результатов измерений, нарушению работоспособности оборудования, снижению качества продукции, снижению ресурса фильтров и, как следствие, серьезным экономическим убыткам.

Для предотвращения вышеописанного, могут использоваться специализированные фильтры, а также установки доочистки аргона (инертных газов) лабораторного или промышленного назначения.

Спектрометры нашего производства

Так как наша компания занимается разработкой и производством спектрометров, применение аргона в этих приборах мы решили рассмотреть более подробно. Ниже в статье этому будет посвящена отдельная глава.

Прочие сферы применения. Огнетушительные установки, заполнение стеклопакетов и поддув сухих гидрокостюмов водолазов для лучшей теплоизоляции, в медицине — очистка разрезов при хирургическом вмешательстве, в химической промышленности — инертная среда для нестабильных на воздухе соединений, а так же в прочих областях промышленности.

Продолжение >

www.iskroline.ru

Свариваем алюминий без аргона своими руками

Привет друзья! Я покажу как сварить алюминий без аргона, обычным инвертором. Весь процесс будет полностью идентичен как при электродуговой сварке стали, за исключением одного небольшого изменения. С помощью этого способа вы сможете без труда производить ремонт алюминиевых деталей или узлов дома, без дорогостоящего оборудования для аргонной сварки.

Понадобится

  • Инверт постоянного тока, способный выдать 120 А.
  • Специальный электрод для сварки алюминия.
Со сварочным аппаратом, думаю все понятно, а про электрод нужно пояснить. Оказывается, не так давно, в продаже появились специализированные электроды для сварки алюминия обычной сваркой без аргонной среды.Марки их могут быть различны, так что спрашивайте в магазинах. В любом случае их без проблем можно приобрести в интернете.Строение они имеют такое же как электрод для стали: жила, имеющая толстое покрытие. Тут все также, только электрод имеет другую цветовую палитру: жила - блестящая, так как состоит преимущественно из алюминия, покрытие - белое.Такие электроды предназначены не только для алюминия, а так же для его сплавов: силумин, дюраль. Поэтому без труда можете варить и их.

Что нужно знать, чтобы сделать качественный шов?

Хоть метод почти ничем не отличается от обычной дуговой сварки, нужно учесть следующие:
  • Сварочный ток должен быть порядка 70-100 А
  • Сварка ведется на короткой дуге.
  • Угол электрода при сварке должен быть 90 градусов.
  • Электрод сгорает в три раза быстрее, чем при обычной сварке стали.
Варить алюминий гораздо сложнее, поэтому, если вы не разу этого не делали, то советую обязательно потренироваться, что буду делать и я.

Свариваем алюминий обычным инвертором без аргона

Мой первый опыт сварки этого металла в без аргонной среде. Я буду сваривать толстые пластины. Закрепляем детали струбцинами. Минус подключаем к нижней пластине. Плюс к электроду. Изначально рекомендую установить ток 100 А и попробовать.Варим все на короткой дуге, так как из-за быстрого плавления электрода ее очень трудно ловить, особенно с непривычки. Приноровившись уже получается стабильно держать дугу.Как и после обычной сварки отбиваем окалину молотком.И зачищаем щеткой.Не судите строго, для первого тренировочного раза, я считаю, это хороший результат.Особенно учитывая насколько это трудоемко и непривычно после обычной сварки стали.

Рекомендации для качественной сварки

  • Зачистите щеткой по металлу место сварки, чтобы удалить оксид с поверхности.
  • Если есть возможность, нагрейте детали газовой горелкой до 150-200 градусов Цельсия, это упростит задачу получения качественного шва.
  • В момент сварки ведите электрод быстрее, так как он сгорает быстрее примерно в 3 раза.

Подведение итогов

С помощью данного метода вы сможете:
  • - варить листовой алюминий;
  • - алюминиевый профиль;
  • - ремонтировать катеры двигателей или любые блоки из дюрали или силумина;
  • - любые сварочные работы бочек или резервуаров;
  • - сваривать токопроводящие шины;
  • - и многое другое.
Прочность шва получается ничуть не хуже чем у аргонной сварки.Конечно, немного трудоемкий процесс, но следует только приноровиться и все пойдет как по маслу. Из недостатков хочется отметить небольшую дороговизну электродов, по сравнению с обычными. Но если с сравнивать с аргонной сваркой, то сантиметр шва получается в разы дешевле, так что способ все равно выигрывает.

Смотрите видео

Обязательно посмотрите видео, где видно насколько это тяжело сделать с первого раз.

sdelaysam-svoimirukami.ru

Газ аргон – химические свойства и сфера применения

В переводе с греческого «argon» означает «медленный» или «неактивный». Такое определение газ аргон получил благодаря своим инертным свойствам, позволяющим широко его использовать во многих промышленных и бытовых целях.

 

Химический элемент Ar

Ar – 18-й элемент периодической таблицы Менделеева, относящийся к благородным инертным газам. Данное вещество является третьим после N (азота) и O (кислорода) по содержанию в атмосфере Земли. В обычных условиях – бесцветен, не горюч, не ядовит, без вкуса и запаха.

 

Другие свойства газа аргона:

  • атомная масса: 39,95;
  • содержание в воздухе: 0,9% объема и 1,3% массы;
  • плотность в нормальных условиях: 1,78 кг/м³;
  • температура кипения: -186°С.

 

Свойства газа аргона

На рисунке название химического элемента и его свойства

 

Данный элемент был открыт Джоном Стреттом и Уильямом Рамзаем при исследовании состава воздуха. Несовпадение плотности при различных химических испытаниях натолкнуло ученых на мысль, что в атмосфере помимо азота и кислорода присутствует инертный тяжелый газ. В итоге в 1894 г. было сделано заявление об открытии химического элемента, доля которого в каждом кубометре воздуха составляет 15 г.

 

Как добывают аргон

Ar не поддается изменениям в процессе его использования и всегда возвращается в атмосферу. Поэтому ученые считают данный источник неисчерпаемым. Он добывается как сопутствующий продукт при разделении воздуха на кислород и азот посредством низкотемпературной ректификации.

 

Для реализации этого метода применяются специальные воздухоразделительные аппараты, состоящие из колонн высокого, низкого давления и конденсатора-испарителя. В результате процесса ректификации (разделения) получается аргон с небольшими примесями (3-10%) азота и кислорода. Чтобы произвести очистку, примеси убираются с помощью дополнительных химических реакций. Современные технологии позволяют достичь 99,99% чистоты данного продукта.

 

Установки для добычи газа аргона

Представлены установки по производству данного химического элемента

 

Хранится и транспортируется газ аргон в стальных баллонах (ГОСТ 949-73), которые имеют серый окрас с полосой и соответствующей надписью зеленого цвета. При этом процесс наполнения емкости должен полностью соответствовать технологическим нормам и правилам безопасности. Детальную информацию о специфике заполнения газовых баллонов можно прочитать в статье: баллоны со сварочной смесью – технические особенности и правила эксплуатации.

 

Где применяется газ аргон

Данный элемент имеет достаточно большую сферу применения. Ниже приведены основные области его использования:

  1. заполнение внутренней полости ламп накаливания и стеклопакетов;
  2. вытеснение влаги и кислорода для долгого хранения пищевых продуктов;
  3. огнетушащее вещество в некоторых системах тушения пожара;
  4. защитная среда при сварочном процессе;
  5. плазмообразующий газ для плазменной сварки и резки.

 

В сварочном производстве он применяется как защитная среда в процессе сварки редких металлов (ниобия, титана, циркония) и их сплавов, легированный сталей разных марок, а также алюминиевых, магниевых и хромоникелевых сплавов. Для черных металлов, как правило, применяют смесь Ar с другими газами – гелием, кислородом, углекислотой и водородом.

 

Газ аргон создает защитную среду

Вид защитной среды при сварочном процессе, которую создает аргон

 

Являясь тяжелее воздуха, аргоновая струя надежно защищает металл во время сварки. Инертный газ на протяжении длительного времени является защитой для расплавленной и нагретой металлической поверхности. Больше о сварочном процессе с применением аргоновой защитной среды читайте в статье: сварка аргоном – технология и режимы работы оборудования.

 

Меры предосторожности при эксплуатации

Данный химический элемент не представляет абсолютно никакой опасности для окружающей среды, но при большой концентрации оказывает удушающее воздействие на человека. Он нередко скапливается в районе пола в недостаточно проветриваемых помещениях, а при значительном уменьшении содержание кислорода может привести к потере сознания и даже смертельному исходу. Поэтому важно следить за концентрацией кислорода в закрытом помещении, которая не должна падать ниже 19%.

 

Еще мы советуем посмотреть третью часть обучения сварке в защитной среде аргона:

 

Жидкий Ar способен вызвать обморожение участков кожи и повредить слизистую оболочку глаз, поэтому в процессе работы важно использовать спецодежду и защитные очки. При работе в атмосфере этого газа с целью предотвращения удушения необходимо применять изолирующий кислородный прибор или шланговый противогаз.

 

Заправить баллоны аргоном можно в компании «Промтехгаз», где соблюдается правильная технология заправки и предоставляется качественное обслуживание.

Если вы интересуетесь другими техническими газами, информацию можете найти здесь.

xn--80affkvlgiu5a.xn--p1ai

Производство аргона - Справочник химика 21

    Японская схема производства аргона. В отличие от всех описанных ранее схем в данном случае для обогащения аргонной фракции и получения высококонцентрированного сырого (по патенту технически чистого) аргона применена колонна двукратной ректификации (рис. 32). [c.86]

    Аргон является наиболее дешевым редким газом, так как содержится в воздухе в значительно большем количестве, чем остальные редкие газы. Поэтому получение аргона на воздухоразделительных аппаратах непрерывно увеличивается мировое производство аргона исчисляется десятками миллионов кубических метров в год. Получение чистого аргона включает три стадии. Вначале в воздухоразделительном аппарате, попутно с кислородом или азотом, получают азото-аргоно-кислородную смесь, так называемый сырой аргон, с содержанием от 65 до 95% аргона. Затем эту смесь подвергают каталитической очистке от кислорода при связывании последнего водородом, с получением смеси азот— аргон. Третья стадия процесса заключается в разделении смеси азот—аргон на чистый аргон, извлекаемый как конечный продукт, и азот, выбрасываемый в атмосферу. [c.258]

    Аргон. Увеличение производства аргона в США связано с ростом потребления его в традиционных областях промышленности (сварка, светотехника, металлургия и т. д.) и появлением новых областей применения (криогенная техника). Его производство составляет [3, 4]  [c.450]

    Конструктивные особенности основных аппаратов и машин для производства аргона [c.63]

    Содержание аргона в атмосфере составляет примерно 1%. Им наполняют электрические лампочки, чтобы нить накаливания можно было нагревать до более высокой температуры, нежели в вакуумной лампочке, и таким образом получать более яркий свет. Аргон уменьшает скорость испарения металлической нити накаливания, поскольку задерживает диффузию испаряющихся с нити атомов металла и способствует соединению их снова с металлом. Аргон также широко применяют в промышленности для создания инертной в химическом отношении атмосферы, в частности нри сварке и при производстве чистых металлов и сплавов. Общий объем производства аргона для этих целей в 1963 г. составлял примерно 3 10 м . [c.226]

    Работы по созданию атомной бомбы во время войны потребовали больших количеств жидкого азота. В результате этого снабжение жидким азотом выросло до крупных промышленных масштабов, и оборудование, первоначально разработанное для жидкого кислорода, нашло применение и для жидкого азота. Вскоре после 1945 г, быстро выросло потребление аргона в качестве защитного газа при сварке. Расширение производства аргона привело к необходимости хранения и перевозки его в жидком состоянии, и в настоящее время перевозка жидкого аргона в транспортных сосудах стала обычной операцией. В настоящей статье наиболее подробно будет рассмотрено оборудование для жидкого кислорода, поскольку его усовершенствование происходило в первую очередь. Это оборудование почти без изменений использовалось для жидкого азота и ар- [c.268]

    В производстве аргона роль дополнительной затраты энергии еще больше. На получение водорода, необходимого для очистки аргона от кислорода и для других нужд, расходуется примерно 1,5 квг-ч/ж аргона, что увеличивает удельный расход энергии примерно вдвое. [c.319]

    Организация производства аргона экономически целесообразна только на крупных воздухоразделительных аппаратах. Получение аргона на аппаратах производительностью менее 150—200 м /ч кислорода нерентабельно. [c.267]

    Аргон благодаря этому качеству может служить в металлургических производствах идеальной защитной средой, позволяющей осуществлять плавку и сварку различных металлов и сплавов в условиях, исключающих их окисление или загрязнение азотом, водородом или другими веществами. В связи с этим в течение последних лет производство аргона развивалось особенно быстро. Объем мирового производства аргона в последнее время составляет десятки миллионов кубических метров в год и продолжает возрастать. [c.325]

    Для извлечения аргона на /з высоты верхней колонны отбирают аргоновую фракцию, которая содержит 4—6% Аг. Путем ее ректификации получают сырой аргон с концентрацией 80—90% Аг, далее его очищают химическими методами и выделяют чистый аргон. В СССР для производства аргона используют установки типа КТ-3600-Ар, работающие по циклу с двумя давлениями, и др. [c.129]

    Чтобы удовлетворить требованиям различных потребителей, технология производства аргона должна обеспечивать как высокое качество, так и низкую себестоимость аргона. [c.329]

    АППАРАТЫ И УСТАНОВКИ ДЛЯ ПРОИЗВОДСТВА АРГОНА [c.1]

    АППАРАТЫ И УСТАНОВКИ ДЛЯ ПРОИЗВОДСТВА АРГОНА ПРИ ПЕРЕРАБОТКЕ ВОЗДУХА [c.73]

    В производстве аргона применяют и приборы, действие которых основано на разнице в теплопроводности газов, входящих в смесь. Для смесей аргона, кислорода и азота тЗ Кой прибор особенно удобен пото- [c.357]

    Книга рассчитана на инженерно-технических работников, занимающихся вопросами проектирования и эксплуатации. установок для производства аргона, и может быть использована студентами вузов соответствующих специальностей. [c.2]

    Бурное развитие техники, в частности техники глубокого охлаждения, позволило в последнее десятилетие резко увеличить производство аргона, который применяется ныне во многих отраслях народного хозяйства. Основные из них (перечислены ниже. [c.7]

    Определение основных размеров аппаратов для производства аргона [c.59]

    Аргон является наиболее дещевым инертным газом, так как содержится в воздухе в значительно большем количестве, чем остальные редкие газы. Поэтому получение аргона на воздухоразделительных аппаратах непрерывно увеличивается мировое производство аргона исчисляется десятками миллионов кубических метров в год. Например, только в США выпуск аргона превышает 45 млн. в год. Аргон применяют как инертный газ, защищающий расплавленный металл от окисления при дуговой сварке нержавеющих сталей и легких сплавов (титана, магния, алюминия и др.), при плазменно-дуговой резке легированных сталей, алюминия, магния, меди и др., для создания инертной среды при промышленном получении чистых титана, циркония, ниобия, молибдена, а также в химической и других отраслях промышленности (в электроламповой для изготовления ламп накаливания, люминесцентных и газосветных трубок, в радиоэлектронной и др.). [c.253]

    Практически производство аргона и других составляющих воздуха сводится к его разделению на чистые компоненты. Основным способом разделения воздуха является в настоящее время метод глубокого охлаждения. [c.9]

    РАСЧЕТ И КОНСТРУИРОВАНИЕ АППАРАТОВ ДЛЯ ПРОИЗВОДСТВА АРГОНА [c.40]

    Основными аппаратами, непосредственно связанными с производством аргона, по современной технологической схеме являются верхняя колонна, колонна сырого аргона, контактные аппараты (реакторы), установки очистки сырого аргона от кислорода и колонна очистки аргона от азота и водорода (колонна чистого аргона). Естественно, что при расчете этих аппаратов (кроме реакторов) наиболее важно определить число ректификационных тарелок и найти места вводов и выводов для обеспечения заданных концентраций продуктов разделения. Особенность разделения тройной смеси не позволяет непосредственно (аналитически или графически) установить требуемое число тарелок, в связи с чем вначале определяется число так называемых теоретических тарелок, а затем уже с учетом коэффициента эффективности разделительного действия — число действительных тарелок. После этого производятся соответствующие гидравлические расчеты, выбирается конструкция тарелки, рассчитываются расстояние между ними и общая высота колонны, определяется диаметр ее в зависимости от количества и скорости поднимающихся паров. Далее производится расчет конденсаторов и подсчитываются общие габариты колонн. [c.40]

    Предложенный в 1948 году М. Б. Столпером графоаналитический метод расчета процесса ректификации тройной смеси J42, 43] был существенным шагом вперед в деле совершенствования технологии производства аргона. Сущность метода заключается в аналитическом расчете концентрации смеси в жидкой или паровой фазе с последующим определением равновесного пара или жидкости по диаграмме равновесия тройной смеси кислород—аргон—азот. Диаграммы, как было отмечено выше, были построены М. Б. Столпером для давлений 1,4 и 6 ата. [c.42]

    С целью резкого увеличения производства аргона последние годы начато оснащение крупных кислородных установок дополнительным оборудованием для производства аргона. Это относится как выпускаемым, так и к действующим кислородным установкам. И если еще несколько лет назад аргон производился в основном на кислородных установках высокого давления (за исключением единичных случаев использования установок двух давлений), то в настоящее время он начинает производиться а установках типа КТ-3600 и даже на установках низкого давления типа Кт-12. [c.90]

    Кроме попутного извлечения аргона при производстве кислорода методом ректификации воздуха весьма интересным и перспективным является новый способ производства аргона при переработке газов продувки синтеза аммиака. [c.106]

    В США аргон был впервые получен в небольшом количестве из жидкого воздуха в 1915 г. на установке фирмы Linde в г. Буффало (Нью-Йорк). В 1916 г. фирма Linde организовала промышленное производство аргона в г. Кливленд (Огайо). До 1923 г. эта фирма оставалась единственным поставщиком аргона в США. В течение многих лет аргон применялся только для заполнения в смеси с азотом ламп накаливания. После 1943 г. производство и потребление его выросло ввиду использования при сварке металлов [262]. [c.451]

    Первые опытные установки для получения инертных газов в СССР были созданы лабораторией редких газов ВЭИ имени В. И. Ленина. Начало промышленного производства технического аргона было положено в 1938 г. на Первом московском автогенном заводе, ныне Московском заводе кислородного машиностроения (МЗКМ). Там уже в 1946—1947 гг. было ачато производство чистого аргона. Однако годовая производительность отдельных установок не превышала в то время 40 000 технического аргона. В 1950—1951 гг. производство аргона было организовано уже на ряде установок средней производительности (до 200 000 аргона в год на каждый аппарат). Одновременно с этим не прекрашались поиски новых способов очистки аргона от примесей и, в первую очередь от кислорода, поскольку применявшийся в то время способ сероочистки не мог обеспечить производство аргона в должном количестве и необходимого качества. В 1955 г. на Первом московском автогенном заводе была внедрена новая технология очистки аргона от кислорода с помошью меди и городского газа, используемого для ее восстановления. В это же время во ВНИИкимаше были начаты широкие работы по экспериментально-теоретическому исследованию ряда вопросов, относящихся к технологии производства аргона от изучения фазового равновесия тройной системы из кислорода, аргона и азота до разработки и внедрения нового прогрессивного способа очистки аргона от кислорода методом каталитического гидрирования с помощью водорода. Ряд экспериментально-теоретических работ по изучению влияния аргона на процесс ректификации аргона и улучшению технологии его производства был проведен в последние годы упо- [c.4]

    Для извлечения аргона на уровне между 18-й и 22-й тарелками верхней колонны отбирают аргонную фракцию, которая содержит 5—12% Аг, Путем ее ректификации получают сырой аргон (70—95%-ный). Далее его очшцают химическими методами и выделяют чистый аргон. В СССР для производства аргона используют установки КжАр-1,6, КтКАр-12, КТ-3600-Ар и др. [c.137]

    В настоящее время производство чистого аргона исчисляется многими миллионами кубометров в год. Без аргона немыслимо существование ряда отраслей новой техники. Потребность в аргоне продолжает все время возрастать, одновременно повышаются требования в отношении его качества. В то же время технология производства аргона не лишена известных недостатков, в частности именно сложный способ очистки аргона от кислорода определяет довольно высокую стоимость аргона. В связи с этим нет оснований отказываться от поисков новых способов и схем комплексного разделения воздуха, которые позволили бы при меньшей напряженности процесса ректификации получать основные компоненты воздуха и в частности аргона. с более высоким коэффициентом извлечения. Большие возможности в отношении резкого увеличения производства аргона представляют создание разработанных ВНИИкимашем крупных кислородно-аргонных установок типа КтАр-12 (БР-1) , а в перспективе организация получения аргона из отходов азотнотуковых заводов. В отношении способов очистки аргона от кислорода (и, возможно, азота) хорошие перспективы представляет способ, основанный на совершенно новой взрывобезопасной основе — селективной низкотемпературной адсорбции синтетическими цеолитами. На базе этого способа можно добиться резкого снижения содержания примесей в сыром аргоне и получения чистого аргона непосредственно из воздухоразделительного блока. [c.5]

    Нз охлаждают в теплообменнике и направляют потребителю. Непродиффундировав-шие газы могут быть использованы как топливо или как сырье для производства аргона. Аммиак из отходящего газа конденсируют и выводят из установки в жидком виде. [c.387]

    Ниже приводится описание основных кислородных установок, на которых предусматривается производство аргона, эксплуатируемых и намечаемых к выпуску в 1963—1966 гг. Основные технические характеристики этих установок даны в приложении 1. Следует отметить, что здесь не приводится описание установок небольшой производительности и установки КТ-ЮООАр с получением аргона, которая работает по циклу и схеме, близким к установке КТ-3600Ар, и в дальнейшем выпускаться не будет. Не приводится также описание схемы установки ЖжААр-1,6, созданной на базе установки Кж-1,6 (КЖ-1600) и отличающейся от установки этой же серии КжАр-1,6 лишь тем, что на ней предусматривается получение 5000 газообразного азота высокой чистоты помимо жидкого и газообразного кислорода и сырого аргона. [c.90]

    Для поддержания в агрегате синтеза на определенном уровне содержания инертных примесей (при наличии их в свежем газе) часть циркуляционного газа после первой сепарации жидкого аммиака постоянно выдувается (так называемые газы постоянной продувки). Кроме того, при дросселировании жидкого аммиака из конденсационной колонны в сборник жидкости, когда давление снижается с 32 МПа до 2,0—2,5 МПа, из жидкого аммиака выделяются растворенные в нем газы (Н2, N2, СН4, Аг, Не). Эта газы, обычно называемые танковыми, кроме того, содержат молярную долю NHз до 30 - 50% и могут с успехом использоваться для извлечения из них Аг, Кг, Хе и Не. Одновременно с этим может быть организовано получение из них азота и водорода с целью возврата этих компонентов в процесс синтеза аммиака. В настоящее время в ряде стран успшшо эксплуатируются установки, в которых разделение отдувочных газов осуществляется с помощью криогенной техники. Если учесть, что при производстве 1 т аммиака образуется около 200 м продувочных газов [16], то при крупнотоннажном производстве аммиака, которое в настоящее время имеет место на больншнстве химических комбинатов и азототуковых заводов, где массовая производительность отдельных агрегатов составляет 1Д—1,5 тыс. т/сут, имеется реальная возможность организации промышленного производства аргона, криптона, ксенона и гелия из отдувочных газов. По мнению авторов работы [24], к 1990 г. до 30% аргона будет производиться из отдувочных газов аммиачных производств. [c.172]

    Советская схема получения сырого аргона. В СССР с самого начала в основу схем установок для производства аргона был положен принцип использования одних лишь внутренних резервов ректификации воздухоразде-лительного аппарата. При этом советская схема получения сырого аргона, разработанная инж. М. Б. Столпером, в начальный период не учитывала ряда весьма важных особенностей процесса производства аргона. [c.77]

    Кроме описанного выще способа, известен ряд зарубежных патентов на производство аргона из продувочных газов синтеза аммиака [52, 59, 64]. В ряде стран (ГДР, Венгрия и др.) получение аргона из отходов азотнотуковых заводов организовано уже в промышленном масштабе. В частности, в Венгрии из заводе Pet Nitrogen Works сооружена опытная установка, на которой в результате переработки газов продувки синтеза аммиака получаются очищенная азото-водородная смесь (возвращаемая в цикл синтеза аммиака), аргон и метан, который используется как горючее. [c.108]

chem21.info

Свойства сварочной дуги в инертных газах – аргоне и гелии

В статье «Электрическая дуга» подробно рассказано, что такое сварочная дуга. В данной статье речь пойдет о свойствах сварочной дуги в среде инертного газа – аргоне или гелии.

Характеристики сварочной дуги различны в зависимости от выбранного защитного газа. Любой дуговой заряд поддерживается благодаря тому, что между электродами заключено ионизированное пространстве, в котором наблюдается движение ионов и электронов от одного электрода к другому.

В среде двухатомных газов электроны при своем движении теряют больше энергии, чем при движении в среде аргона или гелия, так как при этом происходит много неупругих столкновений. Это и ведет к большой потере энергии, ионизация молекул сопровождается их диссоциацией. Данный процесс одновременно обусловливает и меньшую подвижность свободных электронов. Подвижность их в среде инертного газа в несколько раз больше чем в среде активных газов, что увеличивает вероятность возбуждения и ионизации нейтральных частиц газа. При разряде в среде двухатомного газа в дуговом промежутке образуются отрицательные ионы, которые затрудняют движение электронов из-за увеличения электрического сопротивления, чего не наблюдается в среде инертных газов.

Отсутствие отрицательных ионов снижает коэффициент рекомбинации, что ведет к увеличению стабильности разряда. В аргоне и гелии меньше вероятность самопроизвольного прекращения разряда, чем в других газах, так как первые обладают меньшими потенциалами зажигания самостоятельного разряда. Катодное падение напряжения минимально, поэтому для поддержания разряда требуется минимальное напряжение. Нахождение атомов аргона и гелия в метастабильном состоянии облегчает ступенчатую ионизацию газов, а это ведет к тому, что потенциал горения дуги оказывается ниже ионизационного потенциала газов.

Обычно потенциал возбуждения и ионизации инертных газов выше соответствующих потенциалов паров металла, азота и кислорода, что затрудняет зажигание дуги переменного тока при ее питании от обычных трансформаторов. Во время сварки в среде гелия при одинаковой силе тока напряжение дуги на электродах, состоящих из W - Me (металл), Al - Al, Ti - Ti, значительно выше, чем дуги в аргоне. При сварке стали напряжение между железными электродами очень низкое, примерно 8 - 10 В.

Дуга в гелии имеет большую проплавляющую способность и менее концентрирована, она создает более равномерную форму проплавления, чем дуга в аргоне, а последняя обеспечивает большую глубину проплавления в центре. Перепад напряжения в столбе дуги в гелии больше, чем в аргоне, поэтому изменение длины дуги в гелии более заметно сказывается на напряжении и общей тепловой эффективности.

Изменение формы проплавления в зависимости от свойства инертного газа

В зависимости от того, какой инертный газ применяется, меняется поверхностное натяжение на границе металл - газовая фаза. Так, поверхностное натяжение жидких хромоникелевых сталей аустенитной структуры при сварке в гелии заметно меньше, чем в аргоне. Указанное обстоятельство сказывается на формировании поверхности усиления шва. В гелии наблюдается более плавный переход усиления к основному металлу, что иногда ведет к уменьшению концентрации напряжений в этом районе и улучшению работоспособности сварного соединения. Поэтому в ряде случаев становится целесообразным применение аргоно-гелиевых смесей в разных пропорциях смешения.

Дуга, горящая между вольфрамовым электродом и металлом в среде аргона, имеет свои особенности. Статическая характеристика такой дуги в аргоне, как и дуги под слоем флюса, имеет положительный характер. Это объясняется охлаждающим действием газовой струи и высокой плотностью тока на вольфрамовых электродах, которая составляет 10-90 А/мм2. На рисунке ниже приведены статические характеристики для вольфрамовой дуги, горящей в аргоне. Можно видеть, что при больших токах и малых дуговых промежутках напряжение на дуге Uд меньше потенциала ионизации Uп.

  • для аргона Uп = 15,7 В
  • для гелия Uп = 25,4 В

Минимальное напряжение на дуге приближается к потенциалу возбуждения аргона, метастабильное состояние которого, вероятно, в этом случае играет значительную роль. Градиент напряжения в гелии для больших дуговых промежутков больше, чем для малых промежутков. Обратное явление наблюдается в аргоне. Здесь расход газа и диаметр электрода мало отражаются на характере зависимости напряжения дуги от ее длины, а в гелии, наоборот, напряжение дуги можно изменять, меняя расход газа. Свойства дуги, горящей в аргоне между вольфрамовым электродом и металлом, могут меняться в зависимости от свойств металла и состава газовой смеси.

Статические характеристики вольфрамовой дуги в аргоне для различных длин дуг

Технологические свойства вольфрамовой дуги при сварке ухудшаются из-за выпрямления переменного тока (если он применяется) и появления в цепи составляющей постоянного тока.

Анализ этого явления, проведенный по осциллограммам, показывает, что степень выпрямления тока в дуге зависит от различия термических временных постоянных материала электродов (теплоемкости, умноженной на величину, обратную теплопроводности). Чем больше разность этих постоянных, тем больше степень выпрямления тока в дуге. При разных материалах электродов разность их температур во время горения дуги пропорциональна разности термических временных постоянных. Однако различие температур катода в разные полуциклы горения дуги ведет к появлению составляющей постоянного тока, и степень выпрямления оказывается пропорциональной разности термических временных постоянных материалов электродов. Наряду с различием теплофизических свойств электродов на выпрямляющее действие дуги в аргоне сказывается и изменение геометрической формы электродов. Наибольшее значение составляющей постоянного тока, обусловленное различием теплофизических свойств, наблюдается для дуги, возникающей при использовании электродов системы W - Al.

Uхх – напряжение холостого ходаUд - напряжение на дуге Iд – сила сварочного тока

Постоянная составляющая в сварочной цепи переменного тока для дуги системы W – Al в аргоне

В полупериодах, когда катодное пятно расположено на вольфрамовом электроде (прямая полярность), из-за мощной термоэлектронной эмиссии катода создаются благоприятные условия для возбуждения и горения дуги при низком напряжении. В полупериодах, когда катодное пятно находится на алюминии (обратная полярность), катод холодный и термоэлектронная эмиссия затруднена. В данном случае для возбуждения дуги требуются более высокие максимальные (пиковые) значения напряжения, а горение дуги будет происходить при большем значении напряжения, чем в предыдущий полупериод. При сварке на малых токах возбуждение дуги в полупериоды обратной полярности может не произойти вообще, и дуга станет «выпрямительным вентилем». Это ведет к резкому ухудшению стабильности ее горения. При наличии постоянной составляющей и значительно увеличивается сопротивление магнитопровода трансформатора и понижается мощность, отдаваемая дуге. При уменьшении тока в полупериоды обратной полярности затрудняется катодная очистка свариваемых кромок и поверхности сварочной ванны от тугоплавких окисных пленок. Поэтому установки для сварки вольфрамовой дугой (особенно алюминия и его сплавов) должны содержать специальные устройства (стабилизаторы, импульсные возбудители, батареи конденсаторов, полупроводниковые вентили), либо подавать импульсы в полупериод обратной полярности для облегчения зажигания дуги или частичного (полного) подавления возникшей постоянной составляющей тока.

weldering.com