Ремонт компьютерного БП. Проблемы с дежурным напряжением. Ремонт блока питания


Ремонт компьютерного БП. Проблемы с дежурным напряжением

Для более доступного объяснения данного материала настоятельно рекомендую прочесть статью по основам ремонта компьютерных блоков питания.

Итак, дали в ремонт блок питания Power Man на 350 Ватт

Что делаем первым делом? Ну как что? Внешний и внутренний осмотр. Смотрим на «потроха». Если ли какие сгоревшие радиоэлементы? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, то ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке «ВКЛ». Оно НЕ должно быть слишком маленькое, иначе при включении блока питания еще раз коротнут сетевые провода.

Если все ОК, включаем наш блок питания в сеть с помощью сетевого кабеля, который идет вместе с блоком питания, и не забываем про кнопочку включения, если она у вас была в выключенном состоянии.

Далее меряем напряжение на фиолетовом проводе

Мой пациент на фиолетовом проводе показал 0 Вольт. Мда, и вправду не фурычит. Беру мультиметр и прозваниваю  фиолетовый провод на землю. Земля — это провода черного цвета с надписью СОМ. COM — сокращенно от «common», что значит «общий». Есть также некоторые виды, так скажем «земель»:

Как только я коснулся земли и фиолетового провода, мой мультик издал дотошный сигнал «ппииииииииииип» и  показал нули на дисплее. Короткое замыкание, однозначно.

Ну что ж, будем искать схему на этот блок питания. Погуглив по просторам рунета, все-таки схему я нашел. Но нашел только на Power Man 300 Ватт, но все равно они будут похожи. Отличия в схеме были лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схемы, то это не становится большой проблемой.

А вот и схемка на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Как мы видим в схеме, дежурное питание, далее по тексту — дежурка, обозначается как +5VSB:

Прямо от нее идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон — это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Скорее всего стабилитрон сгорел и P-N переход разрушен.

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным, или иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким, или иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта, как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем  проверять пропало ли КЗ между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

1)При последовательном соединении работает правило больше большего, иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

2)При параллельном же соединении работает обратное правило, меньше меньшего, иначе говоря итоговое сопротивление будет меньше чем сопротивление резистора меньшего из номиналов.

Можете взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра ? Правильно, тоже равное нулю…

И до тех пор пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том,  что при звуковой прозвонке, ВСЕ детали параллельно соединенные с деталью находящейся в коротком замыкании, будут у нас звониться накоротко с общим проводом!

Пробуем выпаять стабилитрон. Как только я к нему прикоснулся, он развалился надвое. Без комментариев…

Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Я же сходил в радиомагазин за новым стабилитроном и запаял его. Включаю блок питания, и… вижу как мой новый, только что купленный стабилитрон испускает волшебный дым)…

И тут я сразу вспомнил одно из главных правил ремонтника:

Если что-то сгорело, найди сначала причину этого, а только затем меняй деталь на новую или рискуешь получить еще одну сгоревшую деталь.

Ругаясь про себя матом, перекусываю сгоревший стабилитрон бокорезами,   и снова включаю блок питания.

Так и есть, дежурка завышена: 8,5 Вольт. В голове крутится главный вопрос: «Жив ли еще ШИМ контроллер, или я его уже благополучно спалил?». Скачиваю даташит на микросхему и вижу предельное напряжение питания для ШИМ контроллера, равное 16 Вольтам. Уфф, вроде должно пронести…

Начинаю гуглить по моей проблеме на спец сайтах, посвященных ремонту БП ATX. И конечно же, проблема завышенного напряжения дежурки оказывается в банальном увеличении ESR электролитических конденсаторов в цепях дежурки. Ищем эти кондеры на схеме и проверяем их.

Вспоминаю о своем собранном приборе ESR метре

Самое время проверить, на что он способен.

Проверяю первый конденсатор в цепи дежурки.

ESR в пределах нормы.

Проверяю второй

Жду, когда на экране  мультиметра появится какое-либо значение, но ничего не поменялось.

Понимаю, что виновник, или по крайней мере один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь хочу остановиться подробнее:

Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, из магазина, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания, как раз именно такие цепи.

Итак, я включаю блок питания и снова замеряю напряжение на дежурке. Наученный горьким опытом уже не тороплюсь ставить новый защитный стабилитрон и замеряю напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

Снова сажусь гуглить по проблеме завышенного напряжения на дежурке, и на сайте rom.by, посвященном как ремонту БП ATX  и материнок так и вообще всего компьютерного железа, нахожу свою неисправность поиском в типичных неисправностях данного блока питания. Рекомендуют заменить конденсатор емкостью 10 мкФ.

Замеряю ESR на кондере…. Жопа.

Результат, как и в первом случае: прибор зашкаливает. Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно —  они припухшие, или вскрывшиеся розочкой

Да, я согласен с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

Итак, перебрав свои платы был найден и второй нужный мне конденсатор на одной из плат доноров. На всякий случай было измерено его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаю блок питания клавишным выключателем и измеряю дежурное напряжение. То, что и требовалось, 5,02 вольта… Ура!

Измеряю все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5%.  Осталось впаять стаб на 6,3 Вольта.  Долго думал, почему стабилитрон именно на  6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего, этот стабилитрон стоит здесь как защитный, для того, чтобы в случае повышения напряжения на дежурке, выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурку.

Вторая функция этого стабилитрона, видать, защита ШИМ контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, поэтому на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и присутствует у нас на дежурке.

Итак, какие можно сделать выводы из этого ремонта:

1)Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей, такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

2)Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

3)Найдя какую либо сгоревшую деталь, не торопимся менять её на новую, а ищем причину которая привела к её сгоранию, иначе мы рискуем получить еще одну сгоревшую деталь.

www.ruselectronic.com

Ремонт блока питания в домашних условиях: схемы и светы мастера

Слишком долго включается компьютер или при включении появляются посторонние звуки и запах горелого, иногда происходит самопроизвольное выключение ПК или блок питания компьютера не запускается – вполне возможно, эти признаки свидетельствуют о неисправности БП. Осталось только в этом удостовериться, заменив его на заведомо рабочий.

Если вы определили, что причиной всех бед вашего ПК является вышедший из строя блок питания, то у вас есть два варианта действий: купить новый БП или отремонтировать старый. Тех, кто решается на ремонт, сразу хочется предостеречь: в некоторых случаях его стоимость может превосходить цену нового блока питания, поэтому, прежде чем отдать БП в сервисный центр, хорошенько подумайте, есть ли смысл в этом?

Но для того чтобы выяснить судьбу вышедшего из строя БП, следует провести его диагностику, после чего станет понятным, что при некоторых неисправностях можно произвести ремонт своими руками, как говориться «на коленках». И быстрее получится и дешевле. Итак, решение принято, блок питания компьютера ремонтируем сами, тогда для этого необходимо, как любят повторять в армии, изучить мат. часть, а по-простому – заняться теоретической подготовкой.

Немного теории

Схема импульсного БП

На рисунке 1 показана структурная схема импульсного блока питания АТХ

Изначально, напряжение поступает на сетевой фильтр, который предназначен для сглаживания помех состоит из конденсаторов и дросселей. Проходя через выключатель, напряжение попадает на выпрямитель, состоящий из диодного моста и нескольких сглаживающих конденсаторов, ёмкостью около 400 мКф и рассчитанных на напряжение 400 В.

Теперь в цепи уже протекает постоянный ток, который попадает на высоковольтный транзисторный ключ, который переключается с определенной частотой, задаваемой схемой управления. После ключа, напряжение в цепи уже импульсное, но еще достаточно высокое. Теперь, его необходимо уменьшить до нужных нам отметок. За это отвечает трансформатор, со вторичных обмоток которого выходят напряжения в 5 и 12В как положительной, так и отрицательной полярности.

За выходными напряжениями следит плата управления, которая состоит из шим-контроллера и целого ряда компараторов, которые заменяет всего одна микросхема.

Структура микросхемы по управлению выходными напряжениями

На рисунке 2 представлена структура микросхемы по управлению выходными напряжениями.

Кроме этого, существует еще источники напряжения: 5В – «дежурка» в блоке питания атх и 3.3 В, для питания процессора. Дежурное напряжение служит для запуска некоторых устройств в ПК, например модема, который для получения пакета из сети даст команду на «пробуждение» компьютера.

Основные причины выхода из строя БП

Основных причин, приведших к выходу из строя блок питания вашего ПК, на самом деле не так уж и много, поэтому рассмотрим каждую подробно.

  1. Перепады напряжения питающей сети. Тут все понятно: повышение напряжения выводит из строя элементы первичной цепи, который состоит из высоковольтных электролитических конденсаторов, и выпрямителя, если они установлены без достаточного запаса по току и напряжению.
  2. Некачественная сборка от неизвестного производителя. Все дело в том, что именитый производитель не жалеет деньги на детали для блока питания. Большинство дешевых аналогов используют запчасти из заводского брака, некалиброванные транзисторы, с большим разбросом параметров. Кроме того, хороший производитель всегда предусматривает в схеме защиту цепей, например, термистор в блоке питания компьютера, который отвечает именно за скачки тока при включении ПК. При превышении пределов по току, сопротивление термистора падает, при этом выгорает предохранитель, но, как правило, все остальные детали остаются невредимыми.
  3. Перегрузка БП мо мощности. Это достаточно частая причина поломки, когда максимальная мощность блока питания значительно меньше, чем совокупная мощность установленных в ПК устройств.
  4. Общая запыленность БП может привести к короткому замыканию между дорожками платы или другими деталями, так как пыль является неплохим проводником. Кроме того, пыль налипает на лопасти вентилятора и скорость его вращения значительно снижается. Что может привести к перегреву и без того, нагревающихся транзисторов, установленных на радиаторах.

Следует знать, что при повышении температуры, блок питания выдает значительно меньшую мощность, чем указано в паспорте, что может привести к его перегрузке и срабатыванию защиты.

Самостоятельный ремонт БП

Изначально говорилось о том, что некоторые поломки блока питания можно исправить в домашних условиях, не имея специальных знаний и аппаратуры. В любом случае, для ремонта вам понадобятся паяльник, мультиметр, отвертки, изолента и канцелярский нож.

Перед началом ремонтных работ, ПК следует обесточить и демонтировать БП из компьютера. После чего вывинтить болтики и снять крышку с блока питания.

Расположение деталейТак выглядит расположение деталей на плате БП

Если вы не имеете понятия о напряжении, токе и использовании мультиметра, а также не имеете опыта в работе с высоким напряжением, то лучше всего, обратитесь за помощью к профессионалам.

  1. Если блок питания не запускается и отсутствует выходные напряжения, то следует проверить конденсаторы фильтра и исправность транзисторов в первичной цепи. Кроме того, если был скачек напряжения, то следует проверить термистор и предохранитель. Неисправные конденсаторы при такой поломке может раздуть и это видно невооруженным глазом. Термистор, как правило, обугливается, а предохранитель не звонится мультиметром.

    Транзисторы перед проверкой следует выпаивать, но для этого их необходимо снять с радиаторов. При замене конденсаторов важно соблюдать полярность.

  2. Если неисправность не обнаружена, то проверьте напряжение на конденсаторах выпрямителя. Оно должно составлять 310 В. Если его нет, то следует проверить все детали выпрямителя.
  3. Если не крутится вентилятор, то следует проверить его работоспособность. Если неисправность не выявлена, то проверьте наличие питания вентилятора. Отсутствие +12 В говорит об вышедшей из строя диодной сборке выпрямителя, проблемах с дросселем. Причиной отсутствия вращения вентилятора может быть выгоревший терморезистор в блоке питания компьютера. Проверять диоды, необходимо выпаивая из платы.

    Важно знать, что на радиаторах установлены не только транзисторы из первичной цепи, но и диоды Шоттки во «вторичке», которые находятся в выпрямителе.

  4. Если не происходило дополнительной установки оборудования, а внезапно БП стал выключаться от перегрузки, то следует отключить его от всех нагрузок, кроме одной, и произвести запуск практически в холостом режиме. Если это не помогает, то, проблема в силовом трансформаторе, который следует заменить.

И последнее: если ремонт БП выходит за рамки представленного материала в этой публикации, то лучше всего приобрести новый или доверить ремонтные работы специалистам. Если у вас возникли неразрешенные проблемы с работой ПК, то смело обращайтесь к специалистам нашей компании, мы всегда готовы взяться за любую сложную работу. Работаем как по городу Челябинску, так и по области.

systech.ru

Ремонт блока питания компьютера. Окончание

Добрый день, друзья!

В прошлый раз мы с вами учились врачевать высоковольтную часть компьютерного блока питания. Лечебное искусство (как и любой другое) растет с увеличением практики. Поэтому давайте сейчас посмотрим на

Силовые элементы низковольтной части

Радиатор с никозвольтными диодамиЭти элементы установлены на отдельном радиаторе.

Напомним, что в блоке питания имеется, как минимум, два отдельных радиатора – один для высоковольтных элементов, другой – для низковольтных.

Если в блоке имеется активная схема PFC, то она будет иметь свой радиатор, т.е. всего их будет три.

Силовые элементы низковольтной части – это, как правило, сдвоенные выпрямительные диоды Шоттки. Эти диоды отличаются от обычных тем, что на них падает меньшее напряжение.

Таким образом, при том же токе они рассеивают меньшую мощность и меньше греются.

Диодная сборка имеет общий катод, потому выводов у нее три, а не четыре. Как проверять диоды, написано здесь.

Пробное включение

document-propertiesПосле замены неисправных деталей необходимо произвести пробное включение блока.

При этом вместо предохранителя следует включить электрическую лампу 220 — 230 В мощностью 40 – 100 Вт. Дело в том, что неисправность силовых высоковольтных транзисторов могла быть вызвана неисправностью управляющей микросхемы-контроллера. При этом контроллер может ошибочно открыть сразу оба транзистора.

Через них потечет так называемый сквозной (очень большой) ток, и они выйдут из строя. После замены транзисторов – даже если контроллер и неисправен – почти все напряжение упадет на лампе. Ток будет ограничен, и транзисторы останутся целыми.

Итак, если после замены транзисторов лампа загорится в полный накал – неисправен контроллер или так называемая «обвязка» (дополнительные детали) вокруг него. Но это уже сложная неисправность. Чтобы устранить ее, необходимо знать – как работает контроллер, какие сигналы выдает.

Поэтому такой случай оставим профессионалам. Если же лампа мигнет на короткое время и погаснет (или будет гореть едва заметным накалом), значит, сквозного тока через транзисторы нет.

Следует отметить, что схемотехника блоков питания постоянно совершенствуется, поэтому такой способ пробного включения, вообще говоря, не всегда может быть рекомендован.

Stop_iconeЕсли вы будете использовать его, то помните, что вы применяете его на свой страх и риск.

Если пробное включение прошло нормально, то можно замерить

Напряжение дежурного источника

Запуск блока питанияНапряжение дежурного источника 5VSB (обычно это провод фиолетового цвета) присутствует на выводе разъема блока питания.

Оно должно находиться в пределах 5% поля допуска, т.е. от 4,75 до 5,25 В.

Если оно находится в этих пределах, необходимо присоединить нагрузку к блоку питания и произвести запуск путем замыкания выводов PS ON и общего, обычно черного по цвету.

Контроль основных напряжений и сигнала Power Good

Разъемы питания ATXЕсли блок питания запустится (при этом закрутится вентилятор), следует проконтролировать напряжения +3,3 В, + 5 В, +12 В и сигнал PG (Power Good).

Напряжение на выводе PG должно быть равным +5 В.

Напоминаем, что эти напряжения должны находиться в пределах 5% поля допуска.

Сигнал Power Good служит для запуска процессора.

При включении блока питания в нем происходят переходные процессы, сопровождающиеся скачками выходных напряжений.

Это может сопровождаться потерей или искажениями данных в регистрах процессора.

Если сигнал на выводе PG неактивен (напряжение на нем равно нулю), то процессор находится в состоянии сброса и не стартует.

Сигнал на этом выводе появляется обычно через 0,3 – 0,5 с после включения. Если после включения напряжение там осталось равным нулю – это сложный случай, оставим его профессионалам.

Если напряжение дежурного источника будет ниже 4,5 В, компьютер может не запуститься. Если оно будет выше (бывает и такое), компьютер запустится, но он может «подвисать» и сбоить.

Если напряжение дежурного источника не находится в пределах нормы, это тоже сложный случай, но можно выполнить несколько типовых процедур проверки деталей.

Проверка элементов дежурного источника напряжения

В формировании дежурного напряжения участвуют следующие элементы:

  • оптопара (обычно 817-й серии),

  • высоковольтный полевой или биполярный транзистор,

  • низковольтный биполярный транзистор (чаще  – 2SC945),

  • источник опорного напряжения TL431,

  • низковольтный конденсатор небольшой емкости (10 – 47 мкФ).

Следует проверить их. Транзисторы можно проверить, не выпаивая, тестером (в режиме проверки диодов). Источник опорного напряжения лучше выпаять и проверить, собрав небольшую проверочную схему.

Как это сделать – можно почитать в соответствующей статье на этом сайте. Оптопара выходит из строя редко.

Чтобы проверить конденсаторы, необходим измеритель ESR. Если его нет, тогда можно заменить «подозрительный» элемент заведомо исправным — с такой же емкостью и рабочим напряжением.

Если конденсатор подсох, у него растет ESR и уменьшается емкость. Про конденсаторы и ESR можно почитать в предыдущей статье.

фрагмент схемы блока питанияИногда выходят из строя и резисторы, причем это может быть не очень заметно по внешнему виду.

Поиск такой неисправности – сущее наказание!  :negative:

Необходимо смотреть на маркировку резистора (в виде цветных колец) и сверять маркировочное значение с реальным. И заодно глубоко вникать в принципиальную схему конкретного блока.

Были случаи, когда резистор в цепи источника опорного напряжения увеличивал свое сопротивление, и «дежурка» поднимала свое напряжение до +7 В!

Это повышенное напряжение питало часть компонентов на материнской плате. Компьютер из-за этого «подвисал».

Нагрузка блока питания

document-propertiesПри тестировании блоков питания к ним необходимо подключать нагрузку.

Дело в том, что питаюшие блоки снабжены в большинстве своем элементами защиты и сигнализации. Эти цепи сообщают контроллеру об отсутствии нагрузки. Он может останавливать инвертор, уменьшая выходные напряжения до нуля.

В дешевых моделях эти цепи могут быть упрощены или вообще отсутствовать, и поэтому не исключена поломка блока питания.

Нагрузка блока питанияПри запуске блока питания достаточно подключить нагрузку в виде проволочных сопротивлений ПЭВ-25 6 -10 Ом (к шине +12 В) и 2 — 3 Ом (к шине +5 В).

Правда, могут быть случаи, когда с такой нагрузкой питающий блок запускается, а с реальной нагрузкой – нет.

Но такое бывает редко, и это, опять же, сложный случай. Если уж по-честному, то нагружать надо сильнее, в том числе и шину +3,3 В.

После ремонта надо обязательно проконтролировать напряжения +3,3 В, +5 В, +12 В. Они должны быть в пределах допуска — плюс-минус 5% . С другой стороны, + 12 В + 5% — это 12,6 В, что многовато…

Это напряжение подается на двигатели приводов, в том числе и на шпиндель винчестера, который и так греется достаточно сильно. Если есть регулировка, лучше снизить напряжение до +12 В. Впрочем, в недорогих моделях регулировки обычно нет.

Несколько слов о надежности блоков питания

Отсутствующий входной фильтрМногие дешевые модели блоков питания уж слишком сильно «облегчены», что можно ощутить буквально – по весу.

Производители экономят каждую копейку (каждый юань) и не устанавливают некоторые детали на платах.

В частности, не ставят входной LC-фильтр, дроссели фильтра в каналах выходных напряжений, закорачивая их перемычками.

Если нет входного фильтра, импульсная помеха от инвертора блока питания поступает в питающую сеть и «загрязняет» и без того не очень «чистое» напряжение. Кроме того, увеличиваются скачки тока через высоковольтные элементы, что сокращает срок их службы.

отсутствующий дросеельВ заключение скажем, что если нет дросселей фильтра в каналах выходных напряжений, уровень высокочастотных помех возрастает.

В результате импульсный стабилизатор на материнской плате, вырабатывающий напряжение питания для процессора, работает в более тяжелом режиме и сильнее нагревается.

Отсюда рекомендация – либо заменить такой блок, либо установить недостающие элементы входного и выходных фильтров.

В последнем случае хорошо бы заменить низковольтные выпрямительные диоды более мощными (потому что, скорее всего, сэкономили и на этом). Например, вместо диодных сборок 2040 с током 20 А, установить сборки 3040 с током 30 А.

document-properties«Кормите» компьютер качественным напряжением, и он будет служить Вам долгие годы! На компьютерном «желудке» (как и на своем) лучше не экономить.

С вами был Виктор Геронда.

До встречи на блоге!

vsbot.ru

Один из примеров ремонта блока питания

Должен сказать сразу, исходную поломку я исправил, но в результате ничего не вышло.Но кому интересно почитать о нюансах и методах ремонта, то думаю они найдут для себя что-то интересное и полезное.

Ситуация. На объекте было два больших кондиционера, после близкого попадания молнии оба вышли из строя. Одну плату кто-то смог отремонтировать, вторую после неудачного ремонта принесли мне.В случае удачного ремонта я в таком случае обычно выставляю двукратный ценник за свою работу, так как ремонтировать после кого-то гораздо сложнее и я сегодня покажу почему. Исходно плата выглядела подобным образом. Не удивляйтесь, что на плате нет входного фильтрующего конденсатора, он подключается на проводах, для этого на плате установлен разъем. В кондиционерах такое бывает довольно часто.Один из примеров ремонта блока питания

Но больше меня расстроил вид снизу. Любой ремонт начинается не с попытки включения, а с внешнего осмотра. Никогда не пытайтесь включить блок питания не осмотрев его предварительно, это важно!Один из примеров ремонта блока питания

На плате видны следы пайки, вид несколько жутковатый. Именно по этому я не люблю ремонтировать устройства после вмешательства другого мастера, так как непонятно что стояло изначально и что вообще делалось. Но попробуем разобраться.Один из примеров ремонта блока питания

1. Видно что был заменен ШИМ контроллер и оптопара. Кстати, здесь применен ШИМ контроллер, которому не нужна добавочная обмотка на трансформаторе, это очень удобно, я сам такие использую, но когда снимал видео на эту тему, то забыл про них.Также видно что пытались менять стабилитрон (слева), и выпаяли второй стабилитрон (справа).2. Следы пайки весьма удручают. Я понимаю когда плата имеет такой вид после демонтажа компонента, но после монтажа такое недопустимо.3. Также видно, что перепаивали диодный мост, а рядом демонтировали резистор, номинал неизвестен.4. Здесь также следы пайки. Но удивило то, что выпаивали входной двухобмоточный дроссель, зачем - загадка. ТАкой дроссель без проблем прозванивается в плате. Один из примеров ремонта блока питания

Как я говорил, самое главное - предварительный осмотр, часто он позволяет узнать причину поломки и методы ее решения еще до включения паяльника или тестера. Скажем так, примерно 70-80% случаев можно увидеть глазами, без приборов. Ну по крайней мере в блоках питания :)Около трансформатора видны следы разряда и соответственно металлизации платы вызванной вследствие этого.Один из примеров ремонта блока питания

Выпаиваем трансформатор и видим, что была дуга между двумя контактами. Так как в процессе горения дуги происходит распыление металла контактов, то плата покрыта тонким слоем металлизации.Один из примеров ремонта блока питания

Визуальный осмотр показал, что у трансформатора отгорели провода к средним контактам. Высвобождаем остатки при помощи ножа, затем залуживаем их. После этого берем пару кусочков проволоки и припаиваем контакты.Один из примеров ремонта блока питания

Часто после таких поломок бывает межвитковое КЗ. Подключаю трансформатор к измерителю индуктивности и вижу что индуктивность первичной обмотки около 1.3мГн. Примерно похоже на реальное. Для примера на втором фото я закоротил вторичную обмотку, видно что индуктивность значительно снизилась.Один из примеров ремонта блока питания

Но не спешите паять трансформатор на место. Как я уже говорил, в процессе горения дуги происходит испарение металла с контактов, в данном случае с провода обмотки. Этот металл оседает на текстолите и скорее всего будет проводить ток, в лучшем случае Бп просто бахнет, в худшем станет небезопасным.Кстати, у кондиционеров иногда блок питания не имеет гальванической развязки с сетью, потому в данном случае проблема может быть только в том, что придется ремонтировать Бп еще раз.

В любом случае тщательно вычищаем плату, а заодно очищаем отверстия для установки компонентов.Один из примеров ремонта блока питания

Первое включение всегда делаем через лампу накаливания. Светодиодные, КЛЛ и т.п. применять нельзя.Мощность лампы обычно выбирают исходя из мощности блока питания. Для маломощных блоков (10-40 Ватт) достаточно лампы 15-25 Ватт, для БП мощностью 40-100 Ватт применяют лампу 40 Ватт и т.д.У меня при первом запуске с лампой 15 Ватт она начала моргать в такт со срабатыванием реле на плате, после замены лампы на 25 Ватт все стало нормально, видимо у платы велико собственное потребление.Да, нагрузку при такой проверке не подключают, блок питания проверяется на холостом ходу. Один из примеров ремонта блока питания

В процессе выяснилось, что происходит сильный нагрев стабилизатора 5 Вольт. В итоге я его выпаял из платы и к сожалению повредил в процессе и потом заменил на обычную 7805.Один из примеров ремонта блока питания

Обычно я эту проверку провожу до ремонта БП, но в данном случае я поступил неправильно, сначала отремонтировав блок питания, а только потом начав проверять остальное. Выпаяв микросхему стабилизатора я подал в точку его выхода напряжение 5 Вольт. Выяснилось что плата потребляет 200мА, собственно потому стабилизатор и перегревался отключая при этом выход.Диагноз - выход из строя микроконтроллера, так как у него был самый большой нагрев, а судя по тому, что был применен стабилизатор 78L05, который имеет максимальный ток в 100мА, и при этом его ставят с запасом а на фото мы видим что плата потребляет в 2 раза больше, то в данном случае вывод однозначен.Вместо положенных 50-70мА потребление в 3-4 раза больше.Один из примеров ремонта блока питания

Дальше я просто решил хоть немного довести свою работу до конца, хотя по большому счету особого смысла это не имело, так как микроконтроллера у меня все равно не было.Но я просто решил показать как следует поступать если все таки все остальное цело, ведь блок питания то отремонтирован.

Выше я писал, что на плате не хватало одного стабилитрона, он стоял в цепи стабилизации напряжения. Какое напряжение я узнал сразу, эта цепь питала реле, на которых было указано - 12 Вольт.Я поставил стабилитрон 9.1 Вольта, но выяснилось что это много и напряжение было 16 Вольт вместо 12. Ничего страшного в этом нет, но лучше заменить на другой. Я потом поставил стабилитрон 6.2 Вольта, и напряжение все пришло в норму.Один из примеров ремонта блока питания

Затем я выпаял панельки, в которые были вставлены ШИМ контроллер и оптрон, так как панели в высоковольтных цепях не приветствуются.Процедура проста, выпаиваем панельки (или старые микросхемы), очищаем отверстия, тщательно промываем плату, устанавливаем новые компоненты, промываем плату еще раз.Один из примеров ремонта блока питания

Снизу я также немного навел порядок. Обычно после ремонта, особенно если это кондиционер, увлажнитель (или осушитель) воздуха, стиральная машинка, я покрываю плату защитным лаком, так как у таких устройств возможно попадание влаги. Использую лак - Пластик-70, у него есть преимущество, его можно смыть ацетоном. Если хотите сделать "на века", используйте лак - Уретан.Один из примеров ремонта блока питания

На этом собственно все. Сегодня я дал немного теории, а заодно показал что можно отремонтировать блок питания, но в итоге не отремонтировать устройство, жаль :(

Ну и конечно видео, на этот раз о применении лампочки при ремонте и диагностике поломок блоков питания.Кратко:1. Если лампе непрерывно светит, то скорее всего замыкание во входных цепях, например диодный мост, входные конденсаторы, силовой транзистор.2. Если светит в пол накала, то скорее всего пробит один из диодов диодного моста.3. Если моргает с частотой 0.5-2Гц, то похоже не проблемы во вторичной цепи иШИМ контроллер перезапускается. ТАкже иногда подобное бывает при проблемах в цепи питания ШИМ контроллера.

www.kirich.blog

Ремонт блока питания телевизоров

Ремонт блока питания

Фото блока питания телевизора

Фото блока питания телевизора

 

Среди всех неисправностей ремонт блоков питания занимает первое место. В статье “Неисправности блока питания телевизора” я описывал  типовые неисправности блоков питания. В этой статье я хочу описать работу и ремонт блоков питания поподробнее.

Начать нужно наверное с того как проверить после ремонта блок питания, чтобы не вызвать повторной его поломки. Хотя этот метод считают спорным, я нахожу его весьма действенным.

Итак после ремонта блока питания нужно в разрыв предохранителя впаять лампочку мощностью ватт в 150 (можно и в 100, но может быть ложное свечение), а в разрыв цепи В+ (питание строчной развертки 95-145 вольт, дорожку можно просто разрезать) впаять лампочку 40-60 ватт. Учтите что некоторые блоки питания не запускаются с маленькой нагрузкой.

Работает эта система так. При включении в сеть после ремонта блока питания, при его исправности первая лампочка в момент заряда сетевого конденсатора (100-220мкф 450В) загорается и по мере заряда тухнет. Остается слабый накал. Лампочка в 60 вт светится соответственно напряжению в пол накала.

При неисправном блоке питания лампочка в 150 вт светится полным накалом. В некоторых случаях это спасает от повторного выхода из строя ключевых элементов транзистор, микросхема.

Во втором методе силовой транзистор блока питания не впаивается и с помощью приборов (осциллографа, мультиметра) анализируется уровень и форма сигнала приходящего на него.

Ремонт блока питания.

В описании я буду опираться на приведенную ниже схему.

типовая схема БП

При включении питания сгорает сетевой предохранитель.

Неисправности могут быть вызваны:

  • системой размагничивания;
  • сетевым фильтром и выпрямителем;
  • неисправностью ключа.

Проверяем на предмет короткого замыкания элементы сетевого фильтра, выпрямителя,   терморезистор – системы размагничивания, ключ и элементы его обвязки, а также ключевой микросхемы (если блок питания построен на ней).При нахождении неисправного элемента проанализируйте причины выхода его из строя. Выход из строя транзистора может быть вызван, как скачком напряжения в сети, так и высыханием конденсаторов в первичных цепях.

Блок питания не включается, сетевой предохранитель цел. Следует проверить на предмет обрыва: сетевой фильтр, выпрямитель, ШИМ — модулятор.Начните с проверки, есть ли на сетевом конденсаторе С постоянное напряжение около 300В ( если нет, следует искать разрыв в сетевом фильтре, а также проверьте резистор R.В случае наличия +300В на конденсаторе С, проверьте доходит ли оно до ключевого транзистора. Также следует проверить первичную обмотку сетевого импульсного трансформатора ТР на предмет обрыва.Если все элементы исправны, а блок питания не включается необходимо проверить поступление импульсов на базу (затвор) транзистора.Также проверьте цепочку R запуска, обычно это резисторы с большим сопротивлением.

 

Срабатывает защита блока питания.

Произведите проверку: элементов вторичных выпрямителей блока питания, нагрузок блока питания на предмет короткого замыкания, элементов системы защиты (цепей слежения за выходными напряжениями), цепей обратной связи (модулятор).С вторичными цепями и их нагрузками я думаю все понятно, необходимо проверить выпрямители (диоды) и фильтрующие конденсаторы.В цепях защиты проверьте оптрон и его обвязку.

Что касаемо цепей обратной связи, проверьте стабилитроны, диоды, конденсаторы (обычно 4,7-10- 47 мкф).

 

Напряжения завышены или занижены.

Произвести проверку:

Сетевого конденсатора, конденсаторов обвязки ШИМ, исправность оптрона и его обвязки.

Неисправности появляющиеся периодически.

В этом случае следует поступить следующим образом:

  • проверить пайку элементов блока питания на предмет кольцевых трещин;
  • проверить элементы в местах наибольшего нагрева на плате определив их по почернению.
  • В случае, если неисправность проявляется при прогреве телевизора, локализовать неисправный элемент можно или методом охлаждения (вата смоченная ацетоном, спиртом), или чтобы ускорить появление неисправности спровоцировать ее, нагревая тот или иной элемент паяльником.

data-matched-content-rows-num="4,8" data-matched-content-columns-num="1,4" data-matched-content-ui-type="image_stacked" data-ad-format="autorelaxed">

xn--80aanab4adj2bicdg1q.xn--p1ai

РЕМОНТ БП ATX

РЕМОНТ БП ATX

     Возможно некоторые заметят, что в большинстве случаев БП ATX проще и дешевле выкинуть и купить новый за 20 – 30уе, а не ремонтировать испорченный, но это будет верно лишь в некоторых случаях. Очень часто сгорает копеечная деталь на пол доллара, и найти и заменить её дело пары часов. Недавно сидел и смотрел по компьютеру фильм «Ипман» и чувствую – воняет палёным. Сначала думал что-то на кухне пригорело, но когда комп вырубился на самом интересном месте понял – это был БП. Сомнения окончательно рассеялись лишь только прикоснулся к задней стенке БП ATX – сковородка!      Раскручиваю, отсоединяю, вытаскиваю и вижу слегка обуглившийся участок платы у мощных 30-ти амперных выпрямительных диодов. Прозвонка подтвердила – вылетел один из них. Иду на базар, покупаю новый, впаиваю, включаю – всё работает. Только кулер не крутится, настолько пылью забился, от того и диоды перегрелись. Так что делаем два вывода: Надо чистить вентиляторы и компьютерный БП таки имеет в некоторых случаях смысл ремонтировать.     Во время ремонта следует включать блок питания ATX в сеть 220В через разделительный трансформатор изготовленный из двух ТС-180 (ТС-160). Питание на сеть первого, анодную обмотку на аналогичную анодную второго и сеть второго на БП. Мощность такого источника вполне достаточна для безопасного ремонта. Схемы популярных моделей БП АТХ и книгу с описанием принципа действия блоков питания смотрим на сайте.   

     Итак, сгорел БП ATX, а начит приступаем к ремонту. Прежде всего конечно проверяем внутренний плавкий предохранитель. Открыв корпус, его можно заменить, но в большинстве случаев замена ничего не даст - если не устранена основная неисправность, перегорит и новый предохранитель. Перегорание предохранителя может свидетельствовать о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.

советы по ремонту БП ATX

     Высоковольтные конденсаторы. Для проверки их надо выпаивать из платы, чтоб испытать на ток утечки. Конденсатор проверяют мультиметром в режиме омметра. Сопротивление должно плавно увеличиваться. Скорость увеличения сопротивления зависит от ёмкости конденсатора. Чем больше ёмкость, тем медленнее увеличивается сопротивление. Но можно не выпаивая их, проверить на короткое замыкание. Неэлектролиты особого смысла проверять нет – эти конденсаторы очень редко выходят из строя.     Трансформатор нужно проверить на сопротивление обмоток и на пробой между ними. Проверка всех диодов. Падение напряжения должно быть от 0,05 до 0,7 В. Если падение – ноль, выпаиваем диод одной ногой и проверяем. Если всё равно ноль, значит он пробит.     Осматриваем БП, обращая внимание на поврежденные, потемневшие или сгоревшие детали. Проверяем сопротивление термистора, оно должно быть не более 10 Ом. Ключевые транзисторы проверяем мультиметром по падению напряжения на переходах б-к и б-э в обоих направлениях. В исправном биполярном транзисторе переходы должны звониться как диоды. Силовые транзисторы, типа D209 можно заменить на MJE13009. Выходные диодные сборки по каналам +3.3В, +5В заменимы на STPS4045, MBR20100. Проверяем выходные электролитические конденсаторы. Измеряем выходное сопротивление между общим проводом и выходами блока питания +5В и +12В. должно быть в районе 100-30 Ом, по каналу +3.3В - около 5-20 Ом.

РЕМОНТ БП ATX СВОИМИ РУКАМИ

     Берём лампочку накаливания на 100 Ватт и впаиваем в разрыв сетевого провода. Если при включении БП в сеть лампа вспыхивает и гаснет - все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.      Проверить схему дежурного режима. Измеряем напряжение дежурного источника, нагруженного на лампочку 6В 1А. Проверка микросхемы TL494. На выводе 12 у неё должно быть 12-30V. Если нет проблема с дежурным источником, если есть - проверяем напряжение на выводе 14 TL494 - должно быть +5В. Проверяем напряжение на выводе 4 при замыкании PS ON на землю. До замыкания должно быть порядка 3-5В, после – 0В. Отсутствует? Меняем микросхему. В качестве нагрузки БП следует использовать мощные галогенные лампы на 12В. Между выводом PS ON и GND подключаем кнопку для включения блока питания. 

     Источник питания ATX имеет встроенные регулировки напряжения, которое калибруется и устанавливается при изготовлении. Через какое-то время параметры некоторых узлов могут измениться, тогда изменятся и выходные напряжения. Если дело обстоит именно так, можно настройкой снова установить правильные значения напряжений. Надо найти для каждого напряжения свой подстроечный резистор, а затем измерять выходное напряжение, по очереди изменяя положение органов управления каждого подстроечного устройства, пока не увидите изменение напряжения. Если вы изменяете положение органов управления подстроечного устройства, а наблюдаемое вами напряжение не изменяется, восстановите положение в исходную позицию.     ФОРУМ по ремонту компьютерных блоков питания.

 

Поделитесь полезной информацией с друзьями:

elwo.ru

Устранение неисправностей и ремонт блока питания компьютера

Приветствую всех читателей блога. Блок питания для компьютера — это очень важный компонент всей системы. Чтоб избежать поломок блока питания почитайте статью — как выбрать источник бесперебойного питания для компьютера.

Неисправности блока питания компьютера могут быть разными, начиная от полного отказа от работы и до систематических или временных неполадок.

Удостоверьтесь, что все соединения исправно работают. Кабель питания функционирует, выключатель тоже в порядке, и не было коротких замыканий.

Желательно убедится, что нарушением системы не стал не правильно установленный Windows, а так же, что не было повреждений процессора или оперативной памяти, в таком случае вам нужно узнать образец блока питания.

И, поищите в Интернете схему именно вашей модели бп, так как ее отсутствие очень затруднит процесс ремонта. Так же рекомендуется приготовить ампервольтваттметр, сфигмотоноосциллограф, набор отвёрток (большинство изготовителей используют специализированные болтики типа torx, которые без специализированных инструментов не открутить, или заклепками, которые нужно будет сверлить), ну и естественно же, паяльником с пинкзальцем и гарпиусом.

Неисправности блока питания компьютера — нестабильность в работе

Недоброкачественный блок питания часто становится поводом непостоянной работы системы компьютера. Определяется это, серьезными ошибками и самопроизвольными повторными загрузками, а то и хуже всего абсолютной утратой всей сохраненной информации на жестком диске компьютера.

Большое количество нынешних материнских плат снабжаются объединенным вольтметром и оснащены более или менее современной системой аппаратного наблюдения, механически следящую за особенностями напряжения которым она питается. Тем не менее, точность таких устройств оставляет желать лучшего.Начав работу с приложением помонстроузнее (к примеру, приложение видеомонтажа), и дав ему «попыхтеть» пару часиков (для того, чтобы блок питания успел прогреться, как следует) проверьте количество напряжения, которое оно потребляет.

Если будет необходимо, проверьте безошибочность данных при помощи ампервольтметра. Изменения выше 10% от тех, что показывает устройство, говорят о повреждениях или о некачественном блоке питания.

В случае если же изменение не будет систематическим и по истечению времени быстро возрастает, стоит сменить электролитные теплообменники.

Во время того, когда будете это делать, попробуйте найти подстроечные резисторы и попытайтесь их чуть-чуть прокрутить, не переставая наблюдать за напряженностью абсолютно на всех выводах несколькими ампервольтметрами (или же разъедините бп от «материнки» и присоедините его хотя бы к одному нагрузочному резистору).

Постарайтесь достичь лучшей аналогичности напряженности, не забудьте, что во время изменений нагрузки, напряженность может и возрастать и уменьшаться.

Иной известный источник непостоянной работы системы — колебания питающего напряжения, вызванные фильтрацией плохо качества.

Их очень просто найти при помощи сфигмотоноосциллографа (фиксирование данных, рекомендуется делать при самой большой загрузке компьютера, во время того, когда все жесткие диски и загрузочные сектора задействованы).

Пустяковые колебания (без кардинальных всплесков и индукционного шума) можно и проигнорировать, иначе ремонт блока питания не избежать, либо, что еще хуже, придется купить новый.

В начале удостоверьтесь, что все клапаны и фильтры фигурируют, а не выброшены изготовителем за «ненадобностью» и не заменены перемычками.

В не очень дорогих образцах, такое довольно часто встречается. Элементы, которых нет, можно «одолжить» у неработающих блоков питания или купить на рынке.

Самопроизвольные перезагрузки компьютера или спонтанное выключение системы компьютера, в принципе можно объяснить периодическим пропаданием сигнала power_good, образованным блоком питания, если питающая напряженность всегда соответствует норме.

Без power_good материнская плата регулярно выдает reset, требуя систематические перезагрузки компьютера. Недостаток power_good, говорит либо о неполадках в тестовой логике (это происходит очень редко), либо о важных неисправностях электроники. Использовать данный блок питания, не советуют и починке он фактически не подлежит.к меню ↑

Блок питания не подает признаков жизни — ремонт бп компьютера

В случае, если блок питания не показывает, каких либо признаков исправности (кулеры не исправны, материнская плата не подает признаков жизни), отсоедините его от компьютера, и все эксперименты в дальнейшем осуществляйте c нагрузочным резистором, присоединенному к +5 вольт.

В зависимости от производительности блока питания его сопротивление колеблется от 2 до 5 Ом при производительности не меньше 20 Ватт (без нагрузки даже работающий блок питания, скорее всего, не включится).

Тем не менее, часть блоков питания не включаются до тех пор, пока их не загрузят по полной. Схематическое изображение, показанное ниже, демонстрирует, как это проделать.

 Если не чувствуется запаха гари и аналогичных демонстраций неполадок не наблюдается, типа печатных проводников, которые стоит искать при помощи увеличительного стекла, начинайте починку с осмотра высокоплавкого предохранителя, паритет которого, как правило равен 4 А.

В случае если он сгорел, не торопитесь ставить новый или (не дай бог!) применять жучок. Вернее будет подсоединить синхронно ему накаливающуюся лампу на 220 Вольт с производительностью около 100 Ватт.

Если было короткое замыкание лампа ярко засветится, что обозначает возможное пробивание диодного моста или управляющих им электролитических теплообменников (на приведенном схематическом изображении они отмечены как D1 — D4 и С1 — С6).

При проверке работающего теплообменника указатель вольтомметра в начале стремительно изменяется и доходит фактически до нуля, а потом возвращается на прежнее место. Любые другие действия означают или пробой, или разрыв.

Для осмотра главных транзисторов их нужно вспаивать, или вам не удастся различить существующий пробой от наведенных впечатлений.

Если сопротивление между сборником и испускателем большое или равно бесконечности по обеим линиям, такой транзистор можно считать работающим (кстати, сборник отмечается латинской буковой «C», а испускатель — «E»).

Когда будете вспаивать его на место, уделите внимание защищающему диоду, который помещен между сборником и испускателем (D5/D6). Пересмотрите его на пробой (можно без спаивания).

Для контроля каналов +/-5 В и +/-12 В, определите их сопротивление при отключенном блоке питания (направление +5 В как правило отвечает провод красного цвета, а +12 — провод желтого, масса — провод черного цвета).

Если сопротивление меньше 100 Ом — наверняка, один или два диода пробиты в преобразовательном мосте (эти диоды еще фиксируются на теплообменнике и на показанном схематическом изображении отмечены как D19 — D26).

В то время, когда захотите их снять, уделите внимание невредимости изолирующих прокладок — возможно, они не исправны. Короткое замыкание на корпусе (пробой выпрямительных диодов) обычно определить по тихому жужжанию. Похожим образом инспектируются и направления -5 B/-12 В.

Сложно удостовериться в дееспособности широтно-импульсного модулятора (ШИМ — контролер), которыми могут быть чипы TL493, TL494, TL495 фирменный лейбл Texas Instruments или их подобие (к примеру, МРС494 фирменный лейбл NEC).

Начинать стоит с вычисления напряженности питания чипа (вывод 12), интервал должен быть 7-40 В. Если данная напряженность отсутствует, или не работают внешние цепи, или пробит именно сам чип.

Возьмите в руки нож (лучше скальпель) и прорежьте дорожку, которая ведет к выводу 12. Если после этого напряженность будет такой же, смените неработающий ШИМ-контроллер на другой. Обратите внимание — откуда идет питание цепи и почему она не получает необходимого питания.

Потом проконтролируйте выход опорной напряженности (вывод 14), значение которой должно быть +5 В. Если оно очень низкое или его вообще нет, прорежьте печатный проводник и снова сделайте измерение.

Если напряженность не возобновится, инспектируйте резисторные дивизоры, подсоединенные к данной цепи. В случае, если и при прорезанной дорожке опорная напряженность возобновится (или равно напряженности питания), чип в не рабочем состоянии.

На выводе 5 должны быть пилообразные колебания напряженность с отклонением равным 3 В и колебаниям от 1 до 50 кГц, которые отчетливо видно на мониторе сфигмотоноосциллографа.

Если пила перекошена, колебаний нет или выходят за допустимые рамки, проконтролируйте теплообменник, присоединенный к выводу 5, и резистор, присоединенный к выводу 6. Если они работают, чип нужно заменить.

Теперь нужно удостовериться есть ли сигналы на выходе ШИМ-контроллера. Все зависит от элемента запуска, они могут быть или на 8 и 11 выводах (тогда 9 и 10 выводы должны быть подсоединены к общему шнуру), либо на 9 и 10 выводах (тогда к общему шнуру подсоединяются 8 и 11).

Если на выходах есть всплески с явными областями и отклонением около 2-3 В, чип работает. В противном случае нужно прорезать выходные проводники и взглянуть еще раз на монитор сфигмотоноосциллографа. Нормальный сигнал говорит о пробое транзисторов цепи высоковольтного ключа (Q1/Q2).

Резисторы, подсоединенные к базам ключевых транзисторов (R5и R8), довольно часто дают разрыв. Если их сопротивление большое или равно бесконечности, разрыв видно на лицо.

Вдобавок проконтролируйте и обматывание преобразователя. Найти короткое замыкание, не имея специализированного инструмента, сложно, но найти и увидеть разрыв можно.

После качественного ремонта компьютерного блока питания, оный возможно, сможет проработать еще не один и даже не два года (возможно больше). В основном это зависит от качества внутренней начинки, которую вы в него поставите. Соответственно — чем лучше радиоэлемент, тем он дороже его стоимость.

К слову, когда приходит осень, часть блоков питания не хотят включаться и включаются с перебоями. Причина обычно кроется в «теплолюбивости» монтированного ШИМ-контроллера.

Постарайтесь сменить его на похожий на него чип TL494 с коэффициентом «C», отлично работающую при температуре воздуха от 0 до +70 С или на чип с коэффициентом «I» с диапазоном от -25 до +35.

В летний период нужно будет подумать о хорошей вентиляции и не забывать временами прочищать кулер от пыли и различного рода загрязнений. Если вы будете соблюдать все меры предосторожности, нужные для сохранности деталей, вам не скоро потребуется ремонт бп компьютера. Удачи вам 🙂

entercomputers.ru