Принципы работы солнечных батарей и как они устроены. Как работает солнечная батарея


Принцип работы солнечной батареи и ее устройство

Относительно недавно считалась фантастической сама идея обеспечивать частные дома электричеством автономно. Сегодня это объективная реальность. В Европе солнечные батареи используются уже продолжительное время, ведь это практически неисчерпаемый источник дешевой энергии. У нас получение электричества от таких устройств только обретает популярность. Данный процесс происходит не слишком быстро, и виной тому – высокая стоимость их.

Принцип работы солнечной батареи основан на том, что в двух кремниевых пластинах, покрытых разными веществами (бором и фосфором), под действием солнечного света возникает электрический ток. В пластине, которая покрыта фосфором, появляются свободные электроны. принцип работы солнечной батареи Отсутствующие частицы образуются в тех пластинах, которые покрыты бором. Электроны начинают двигаться под действием света солнца. Так образуется электрический ток в солнечных батареях. Тонкие жилы из меди, которыми покрыта каждая батарея, отводят от нее ток и направляют по назначению.

С помощью одной пластины можно питать энергией небольшую лампочку. Вывод напрашивается сам собой. Для того, чтобы солнечные батареи обеспечивали дом электричеством достаточной мощности, нужно чтобы их площадь была довольно большой.

Кремниевые механизмы

Итак, принцип работы солнечной батареи понятен. Ток вырабатывается при воздействии ультрафиолетового света на специальные пластины. Если в качестве материала для создания таких пластин используется кремний, то батареи называются кремниевыми (или кремневодородными).

Подобные пластины требуют очень сложных систем производства. Это, в свою очередь, сильно влияет на стоимость изделий.

Кремниевые солнечные батареи бывают разных типов.

Монокристаллические преобразователи

Представляют собой панели со скошенными углами. Их цвет всегда чисто черный.

Если говорить о монокристаллических преобразователях, то принцип работы солнечной батареи кратко можно охарактеризовать как средне эффективный. Все ячейки светочувствительных элементов такой батареи направлены в одну сторону. принцип работы солнечных батарей

Это позволяет получить самый высокий результат среди подобных систем. КПД батарей этого типа достигает 25%.

Минусом является то, что такие панели должны быть всегда обращены лицевой стороной к солнцу.

Если солнце прячется за тучами, опускается к горизонту, или еще не успело взойти, то батареи будут вырабатывать ток довольно слабой мощности.

Поликристаллические

Пластины этих механизмов всегда квадратные, темно-синего цвета. В состав их поверхности включены неоднородные кристаллы кремния.

КПД поликристаллических батарей не настолько высок, как у монокристаллических моделей. Он может достигать 18%. Однако этот недостаток компенсируется достоинствами, о которых будет сказано ниже.

Принцип работы солнечной батареи этого типа позволяет изготавливать их не только из чистого кремния, но также из вторичных материалов. Этим объясняются некоторые дефекты, встречающиеся в оборудовании. Отличительной особенностью механизмов данного типа является то, что они могут достаточно эффективно вырабатывать электрический ток даже при пасмурной погоде. Такое полезное качество делает их незаменимыми в местах, где рассеянный солнечный свет является обычным повседневным явлением.

принцип работы солнечной батареи кратко

Аморфные панели из кремния

Аморфные панели дешевле остальных, это обуславливает принцип работы солнечной батареи и ее устройство. Каждая панель состоит из нескольких тончайших слоев кремния. Их изготавливают путем напыления частиц материала в вакууме на фольгу, стекло или пластмассу.

КПД панелей значительно меньше, чем у предыдущих моделей. Он достигает 6%. Кремниевые слои довольно быстро выгорают на солнце. Уже через полгода использования этих батарей их эффективность упадет на 15%, а иногда и на все 20.

Два года работы полностью исчерпают ресурс действующих веществ, и панель нужно будет менять.

Но есть два плюса, из-за которых эти батареи все же покупают. Во-первых, они работают даже в пасмурную погоду. Во-вторых, как уже говорилось, они не такие дорогие, как другие варианты.принцип работы солнечной батареи основан на

Фотопреобразователи гибридного типа

Аморфный кремний является основой для расположения микрокристаллов. Принцип работы солнечной батареи делает ее похожей на поликристаллическую панель. Отличие батарей такого типа состоит в том, что они способны вырабатывать электрический ток большей мощности в условиях рассеянного солнечного света, например, в пасмурный день или на рассвете.

Кроме того, батареи работают под воздействием не только солнечного света, но и в инфракрасном спектре.

Полимерные пленочные солнечные преобразователи

У этой альтернативы панелям из кремния есть все шансы занять лидирующее положение на рынке солнечных батарей. Они напоминают пленку, состоящую из нескольких слоев. Среди них можно выделить сетку алюминиевых проводников, полимерный слой активного вещества, подложка из органики и защитной пленки.

Такие фотоэлементы, объединенные друг с другом, образуют пленочную солнечную батарею рулонного типа. Эти панели легче и компактнее кремниевых. При их изготовлении не используется дорогостоящий кремний, и сам процесс производства не такой затратный. Это делает рулонную панель дешевле всех прочих.

Принцип работы солнечной батареи делает их КПД не слишком высоким.

Он достигает 7%.

Процесс изготовления панелей этого типа сводится к многослойному печатанию на пленку фотоэлемента. Производство налажено в Дании.

Еще одним преимуществом является возможность резать рулонную батарею и подгонять ее под любой размер и форму.

Минус лишь один. Батареи только начали производить, поэтому еще довольно непросто ими обзавестись. принцип работы солнечных батарей от ультрафиолетового света Но есть повод полагать, что эти элементы быстро обретут заслуженную хорошую репутацию среди потребителей, что даст изготовителям возможность наладить производство в более крупных масштабах.

Отопление солнечной энергией домов

Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.принцип работы солнечной батареи и ее устройство

Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.

Как работает солнечное отопление?

Давайте подробно рассмотрим принцип работы солнечных батарей от ультрафиолетового света.

Между температурой коллектора и накопительного элемента появляется разница. Носитель тепла, что чаще всего является водой, в которую добавлен антифриз, начинает циркулировать о системе. Совершаемая жидкостью работа является именно кинетической энергией. принцип работы солнечной батареи для отопления дома

По мере прохождения жидкости через слои системы кинетическая энергия преобразовывается в тепло, которое и используется для отопления дома. Этот процесс циркуляции носителя обеспечивает помещение теплом и позволяет сохранять его в любое время суток и года.

Итак, мы выяснили принцип работы солнечных батарей.

fb.ru

Принцип работы солнечной батареи: как устроена панель

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

Содержание статьи:

Солнечные батареи: терминология

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Солнечная батарея

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя.

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Принцип работы солнечной батареи

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Солнечная батарея

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Виды солнечных батарей

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

Устройство солнечной батареи

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Работа фотоэлектрического преобразователя

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Работа солнечной батареи

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–550С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Параллельное и последовательное подсоединение

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. Аккумуляторы.
  4. Инвертор (трансформатор).

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторы для гелиопанелей

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Инвертор нужен для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Полезное видео по теме

Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

sovet-ingenera.com

Как устроены и работают солнечные батареи

Солнечная энергетика становится все более популярной во всем мире. Вместе с коллегами из специализированного портала Elektrik мы разбирались, как устроена солнечная батарея, из чего она состоит и куда отправляется получаемая энергия.

В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи – это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.

Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые – 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.

Электродвижущая сила отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном – выходной ток.

Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.

Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а электродвижущая сила - последовательно включенных солнечных элементов. Так, комбинируя типы соединения, собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 – по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает.

Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов они шунтируются и ток через них не идет.

Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы – химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.

При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.

При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов – гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей – 10 - 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.

Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства – инверторы.

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.

Автор текста: Андрей Повный. Текст впервые опубликован на сайте Electrik.info. Перепечатано с согласия редакции.

recyclemag.ru

Солнечная батарея — принцип работы

Дорого отапливать дом газом? Или у вас на даче постоянно отключают свет? А может быть вы устали переплачивать за электроэнергию? Вам поможет установка солнечной батареи, которая обеспечит вас не только электричеством, но и отоплением. В этой статье мы рассмотрим принцип работы солнечной батареи, и ее отличия от солнечного коллектора.

Содержание:

  1. В чем суть работы солнечной батареи?
  2. Итак, как же работает солнечная батарея?
  3. Типы солнечных батарей
  4. Зачем нужен контроллер в солнечной батарее?
  5. Садовые фонари на солнечных батареях

В чем суть работы солнечной батареи?

Солнечная батарея Солнечная батарея

Солнечная батарея, она же фотобатарея, представляет собой фотопластину, изменяющую под воздействием солнечных лучей проводимость в отдельных своих участках.

Это позволяет преобразовать энергию этих переходов в электрическую, которая либо используется сразу, либо накапливается.Для того, чтобы понять принцип работы солнечной батареи, необходимо знать несколько моментов:

  1.  Солнечная батарея представляет собой систему фотоэлектрических преобразователей, которые соединены друг с другом в заданной последовательности.
  2. В структуру фотопреобразователей входит два слоя, отличающихся между собой типом проводимости: n и p. Структура фотопреобразователей Структура фотопреобразователей
  3.  Основой для изготовления фотопреобразователей служит кремний.
  4.  В слое n-типа к кремнию добавлен фосфор; в результате их взаимодействия образуется избыток отрицательно заряженных электронов.
  5.  В слое р-типа к кремнию добавлен бор, в результате чего образуются так называемые «дыры», которые вызваны дефицитом в слое отрицательных зарядов.
  6. Оба слоя размещаются между разнозаряженными электродами

Итак, как же работает солнечная батарея?

Работа солнечной батареи Работа солнечной батареи

На отрицательно заряженную панель падает солнечный свет. Он вызывает активное образование дополнительных отрицательных зарядов и «дырок». Под воздействием электрического поля, которое присутствует в p-n переходе, происходит разделение положительно и отрицательно заряженных частиц. Первые направляются в верхний слой, а вторые в нижний. Таким образом, появляется разность потенциалов, иными словами, постоянное напряжение (U). Исходя из этого видно, что один фотопреобразователь работает по принципу батарейки. И в случае, когда к нему подсоединяется нагрузка, в цепи возникает ток. Сила тока будет зависеть от таких параметров, как:

  • уровень инсоляции;
  • размер фотопреобразователя;
  • тип фотоэлемента;
  • общего сопротивления приборов, подключенных к солнечной батарее. Схема подключения Схема подключения

Типы солнечных батарей

Выделяют несколько типов солнечных батарей: поли- и монокристаллические, а также аморфные.Монокристаллические являются наименее продуктивными, но при этом самыми недорогими. В связи с этим их использование оправдано в качестве дополнительных источник энергии на случай отключения централизованной подачи электроэнергии.Поликристаллы занимают промежуточные позиции по этим двум параметрам, в связи с чем могут быть использованы в отдаленных районах, лишенных централизованной подачи электроэнергии.

Типы солнечных батарей Типы солнечных батарей

Аморфные солнечные батареи отличаются высокой эффективностью, однако и очень высокой стоимостью. В их основу входит аморфный кремний.

Аморфные солнечные батареи Аморфные солнечные батареи

Данные разработки еще не вышли на промышленный уровень и находятся на экспериментальной стадии.

Зачем нужен контроллер в солнечной батарее?

Солнечные батареи, принцип работы которых был описан выше, не смогли бы эффективно заменить системы центральной подачи электроэнергии, если бы не были оснащены контроллерами, способными контролировать степень заряда солнечной батареи.

Контроллер в солнечной батарее Контроллер в солнечной батарее

Контролеры позволяют перераспределять энергию, полученную от солнечных батарей, направляя ее при необходимости напрямую к источнику потребления, либо сохраняя ее в аккумуляторе.Выделяют несколько типов контроллеров солнечных батарей, отличающихся между собой степенью увеличения общей эффективности системы солнечных батарей.

Садовые фонари на солнечных батареях

Для того, чтобы приобщиться к использованию альтернативных источников энергии, вовсе не обязательно приобретать дорогостоящую солнечную батарею. Есть более доступные примеры использования солнечной энергии для получения электрической. Речь идет о популярных в настоящее время садовых фонарях на солнечных батареях.

Садовые фонари на солнечных батареях Садовые фонари на солнечных батареях

Такие фонарики позволяют освещать приусадебный участок в темное время суток, не затрачивая на это дополнительную электроэнергию.

Улавливание и преобразование солнечной энергии Улавливание и преобразование солнечной энергии

Принцип работы таких фонарей заключается в том, что посредством фитопластины, вмонтированной в верхнюю часть фонарика, происходит улавливание и преобразование солнечной энергии, которая аккумулируется в небольшой батарее, расположенной в основании фонарика. Расход накопившейся энергии происходит в темное время суток.

Читайте также:

nashprorab.com

как работают и из чего состоят

Солнце – это неисчерпаемый источник энергии. Его можно использовать, сжигая деревья или нагревая воду в солнечных нагревателях, преобразуя полученное тепло в электроэнергию. Но есть устройства, превращающие солнечный свет в электричество напрямую. Это солнечные батареи.

Сфера применения

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.
Солнечные батареи на дачеСолнечные батареи на дачеСолнечные батареи удобно применять там, куда нельзя подвести электричествок содержанию ↑

Принцип работы

Элементы солнечных батарей представляют собой пластинки из кремния толщиной 0,3 мм. Со стороны, на которую попадает свет, в пластину добавлен бор. Это приводит к появлению избыточного количества свободных электронов. С обратной стороны добавлен фосфор, что приводит к образованию «дырок». Граница между ними называется p-n переход. При попадании света на пластину, он «выбивает» электроны на обратную сторону. Так появляется разность потенциалов. Вне зависимости от размера элемента, одна ячейка развивает напряжение 0,7 В. Для увеличения напряжения, их соединяют последовательно, а для повышения силы тока – параллельно.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

В некоторых конструкциях, для увеличения мощности, над элементами устанавливались линзы или использовалась система зеркал. С уменьшением стоимости батарей такие устройства стали неактуальными.

Максимальный КПД панели, а, следовательно, и мощность, достигается при падении света под углом 90 градусов. В некоторых стационарных устройствах батарея поворачивается вслед за солнцем, но это сильно удорожает и утяжеляет конструкцию.

Солнечные батареи принцип работыСолнечные батареи принцип работыПринцип работы солнечной батареик содержанию ↑

Преимущества и недостатки применения батарей

У солнечных панелей, как и у любых устройств, есть достоинства и недостатки, связанные с принципом действия и особенностями конструкции.

Достоинства солнечных батарей:

  • Автономность. Позволяют обеспечить электроэнергией удаленные здания или светильники и работу мобильных устройств в походных условиях.
  • Экономичность. Для выработки электроэнергии используется свет солнца, за который не нужно платить. Поэтому ФЭС (фотоэлектрические системы) окупаются за 10 лет, что меньше срока службы, составляющего более 30. Причем 25–30 лет – это гарантийный срок, а фотоэлектростанция будет работать и после него, принося прибыль владельцу. Конечно, необходимо учесть периодическую замену инверторов и аккумуляторных батарей, но все равно, использование такой электростанции помогает экономить средства.
  • Экологичность. При работе устройства не загрязняют окружающую среду и не шумят, в отличие от электростанций, работающих на других видах топлива.

Кроме достоинств, у ФЭС есть недостатки:

  • Высокая цена. Такая система стоит довольно дорого, особенно с учетом цены на аккумуляторные батареи и инверторы.
  • Большой срок окупаемости. Средства, вложенные в фотоэлектростанцию, окупятся только через 10 лет. Это больше, чем основная масса других вложений.
  • Фотоэлектрические системы занимают много места – всю крышу и стены здания. Это нарушает дизайн сооружения. Кроме того, аккумуляторные батареи большой емкости занимают целую комнату.
  • Неравномерность выработки электроэнергии. Мощность устройства зависит от погоды и времени суток. Это компенсируется установкой аккумуляторных батарей или подключением системы к сети. Это позволяет в хорошую погоду днем продавать излишки электроэнергии электрокомпании, а ночью наоборот подключать оборудование к централизованному электроснабжению.

к содержанию ↑

Технические характеристики: на что обратить внимание

Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.

Кроме самих батарей, важно подобрать контроллер зарядки аккумуляторов и инвертор, преобразующий заряд аккумуляторных батарей в напряжение сети, а также сами панели.

В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.

Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.

К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.

Кроме мощности и напряжения, важно выбрать фирму-производителя. Такое оборудование приобретается на срок несколько десятков лет, поэтому экономить на качестве нельзя. Производители, давно работающие на рынке, это понимают и дорожат своей репутацией. Можно почитать отзывы о них в интернете и выбрать с самыми положительными.

к содержанию ↑

Виды солнечных батарей

Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.

Солнечные батареи видыСолнечные батареи видыВнешний вид моно- и поликристаллических панелей

Элементы из монокристаллического кремния

Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:

  • из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
  • после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
  • получившийся брусок разрезается на пластины толщиной 0,3 мм;
  • в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
  • из готовых элементов собирается ячейка батареи.

Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.

Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.

Фотоэлементы из мульти-поликристаллического кремния

Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа. Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров. Поэтому элементы получаются прямоугольной или квадратной формы.

В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество. Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный. У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.

Фотоэлементы из аморфного кремния

В последние годы распространение получили гибкие батареи, которые легче жестких. Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.

Солнечные батареи аморфныеСолнечные батареи аморфныеСолнечные батареи из аморфного кремния

КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.

Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.

Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.

к содержанию ↑

Контроллер заряда для солнечных батарей

У прямого подключения панели к аккумулятору есть недостатки:

  • Аккумулятор с номинальным напряжением 12 В будет заряжаться только при достижении напряжения на выходе фотоэлементов 14,4 В, что близко к максимальному. Это значит, что часть времени батареи заряжаться не будут.
  • Максимальное напряжение фотоэлементов – 18 В. При таком напряжении ток заряда аккумуляторов будет слишком большим, и они быстро выйдут из строя.

Для того чтобы избежать этих проблем необходима установка контроллера заряда. Самыми распространенными конструкциями являются ШИМ и МРРТ.

ШИМ-контроллер заряда

Работа ШИМ-контроллера (широтно-импульсная модуляция – англ. pulse-width modulation — PWM) поддерживает постоянное напряжение на выходе. Это обеспечивает максимальную степень заряда аккумулятора и его защиту от перегрева при зарядке.

МРРТ-контроллер заряда

МРРТ-контроллер (Maximum power point tracker – слежение за точкой максимальной мощности) обеспечивает такое значение выходного напряжения и тока, которое позволяет максимально использовать потенциал солнечной батареи вне зависимости от яркости солнечного света. При пониженной яркости света он поднимает выходное напряжение до уровня, необходимого для зарядки аккумуляторов.

Такая система есть во всех современных инверторах и контроллерах зарядки

к содержанию ↑

Виды аккумуляторов, используемых в батареях

Аккумулятор для солнечных батарейАккумулятор для солнечных батарейРазличные виды аккумуляторов, которые можно использовать для солнечной батареи

Аккумуляторы – важный элемент системы круглосуточного электроснабжения дома солнечной энергией.

В таких устройствах используются следующие виды аккумуляторов:

  • стартерные;
  • гелевые;
  • AGM батареи;
  • заливные (OPZS) и герметичные (OPZV) аккумуляторы.

Аккумуляторы других типов, например, щелочные или литиевые дорогие и используются очень редко.

Все эти виды устройств должны работать при температуре от +15 до +30 градусов.

Стартерные аккумуляторы

Самый распространенный тип аккумуляторов. Они дешевы, но обладают большим током саморазряда. Поэтому через несколько пасмурных дней батареи разрядятся даже при отсутствии нагрузки.

Недостатком таких устройств является то, что при работе происходит газовыделение. Поэтому их необходимо устанавливать в нежилом, хорошо проветриваемом помещении.

Кроме того, срок службы таких аккумуляторов до 1,5 лет, особенно при многократных циклах заряд-разряд. Поэтому в долгосрочной перспективе эти устройства окажутся самыми дорогими.

Гелевые аккумуляторы

Гелевые аккумуляторы –изделия, не требующие обслуживания. При работе отсутствует газовыделение, поэтому их можно устанавливать в жилой комнате и помещении без вентиляции.

Такие устройства обеспечивают большой выходной ток, имеют высокую емкость и низкий ток саморазряда.

Недостаток таких приборов в высокой цене и небольшом сроке службы.

AGM батареи

Эти батареи имеют небольшой срок службы, однако, у них есть много преимуществ:

  • отсутствие газовыделения при работе;
  • небольшими размерами;
  • большим количеством (около 600) циклов заряда-разряда;
  • быстрым (до 8 часов) зарядом;
  • хорошей работой при неполном заряде.
AGM батареяAGM батареяAGM батарея изнутри

Заливные (OPZS) и герметичные (OPZV) аккумуляторы

Такие устройства являются самыми надежными и имеют наибольший срок службы. Они обладают низким током саморазряда и высокой энергоемкостью.

Эти качества делают такие приборы наиболее популярными для установки в фотоэлементных системах.

к содержанию ↑

Как определить размер и количество фотоэлементов?

Необходимые размер и количество фотоэлементов зависит от напряжения, силы тока и мощности, которые нужно получить от батареи. Напряжение одного элемента в солнечный день равно 0,5 В. При облачности оно намного ниже. Поэтому для зарядки аккумуляторов 12 В, соединяются последовательно 36 фотоэлементов. Соответственно, для аккумуляторов 24 В необходимо 72 элемента и так далее. Общее их количество зависит от площади одного элемента и необходимой мощности.

Один квадратный метр площади батареи, с учетом КПД, может выдать приблизительно 150 Вт. Точнее можно определить по метеорологическим справочникам, показывающим количество солнечной радиации в месте установки гелиооэлектростанции или в интернете. КПД устройства указан в паспорте.

При изготовлении фотоэлектростации своими руками необходимое количество элементов определяется по мощности одного элемента в данном климате с учетом КПД.

Много солнечных батарей для большого зданияМного солнечных батарей для большого зданияРасчет количества солнечных батарей исходит из необходимого электричествак содержанию ↑

Эффективность солнечных батарей зимой

Несмотря на то что зимой солнце поднимается ниже, поток света уменьшается незначительно, особенно после выпадения снега.

Основных причин, по которым солнечные элементы зимой менее эффективны три:

  • Меняется угол падения лучей. Для того чтобы сохранять мощность, угол наклона батареи необходимо менять хотя бы раз в сезон, а лучше каждый месяц.
  • Снег, особенно влажный, налипает на поверхность устройства. Его необходимо убирать сразу после выпадения.
  • Зимой меньше продолжительность светлого времени суток, а также больше пасмурных дней. Изменить это невозможно, поэтому приходится рассчитывать мощность батареи по зимнему минимуму.
к содержанию ↑

Правила установки

Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке. Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания.

Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.

Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.

Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.

lampaexpert.ru

Доступными словами принципы работы солнечных батарей

Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.

Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.

Все дело в кремнии

Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.

Солнечная панель

Солнечная панель состоит из нескольких фотоэлементов.

Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)

Кремний располагается между двумя токопроводящими слоями.

Кремний в фотоэлементе

"Сэндвич" из кремния и токопроводящих слоев

Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.

Устройство атомов кремния

Структура атомов кремния

Для того, чтобы получить ток используют два различных слоя кремния:

  • Кремний N-типа имеет избыток электронов
  • Кремний Р-типа – дополнительные места для электронов (дырки)
Различные типы кремния в солнечных батареях

Кремний Р и N типа

Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.

Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р - сторону пластины.

Электрон в фотоэлементе

После "освобождения" электрон стремится к проводнику

Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка :) . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».

Движение электронов в фотоэлементах

Работа фотоэлемента

Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.

Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.

Почему человек не перешел на солнечную энергию полностью?

Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.

  1. Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
  2. КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
  3. Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
  4. Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты

Видео о том, как производят солнечные батареи.

В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.

Загрузка...

Facebook

Вконтакте

Одноклассники

Google+

Солнечные батареи в частном доме Как быстро окупятся солнечные батареи для частного дома. Схема подключения фотоэлементов в солнечной батарее Собрать своими руками солнечную батарею из подручных средств Компоновка деталей на плате Какие бывают контроллеры для солнечных батарей и как их выбирать Самодельный генератор бесплатной энергии Бестопливный генератор дает свободу... Свободу от денег

electricadom.com

Как работают солнечные батареи? — Naked Science

Когда-то фотоэлементы использовались почти исключительно в космосе, например, в качестве основного источника энергии спутников. С тех пор солнечные батареи все больше входят в нашу жизнь: ими покрывают крыши домов и машин, используют в наручных часах и даже в темных очках.

 

Но как же функционируют солнечные батареи? Каким образом удается преобразовывать энергию солнечных лучей в электричество?

 

Основные принципы

Солнечные панели состоят из фотоэлектрических ячеек, запакованных в общую рамку. Каждая из них сделана из полупроводникового материала, например, кремния, который чаще всего используется в солнечных батареях.

 

Когда лучи падают на полупроводник, тот нагревается, частично поглощая их энергию. Приток энергии высвобождает электроны внутри полупроводника. К фотоэлементу прилагается электрическое поле, которое направляет свободные электроны, заставляя их двигаться в определенном направлении. Этот поток электронов и образует электрический ток.

 

Если приложить металлические контакты к верху и к низу фотоэлемента, можно направить полученный ток по проводам и использовать его для работы различных устройств. Сила тока вместе с напряжением ячейки определяют мощность электроэнергии, производимой фотоэлементом.

 

Панель солнечной батареи

©depositphotos.com

 

Кремниевые полупроводники

Рассмотрим процесс высвобождения электронов на примере кремния. Атом кремния имеет 14 электронов в трех оболочках. Первые две оболочки полностью заполнены двумя и восемью электронами соответственно. Третья же оболочка наполовину пуста – в ней всего 4 электрона.

 

Благодаря этому кремний имеет кристаллическую форму; пытаясь заполнить пустоты в третьей оболочке, атомы кремния пытаются «делиться» электронами с соседями. Однако кристалл кремния в чистом виде – плохой проводник, поскольку практически все его электроны крепко сидят в кристаллической решетке. 

 

Поэтому в солнечных батареях используют не чистый кремний, а кристаллы с небольшими примесями, т. е. в кремний вводятся атомы других веществ. На миллион атомов кремния приходится всего один атом, например, атом фосфора.

 

У фосфора пять электронов во внешней оболочке. Четыре из них образуют кристаллические связи с близлежащими атомами кремния, однако пятый электрон фактически остается «висеть» в пространстве, без всяких связей с соседними атомами.

 

Когда на кремний попадают солнечные лучи, его электроны получают дополнительную энергию, которой оказывается достаточно, чтобы оторвать их от соответствующих атомов. В результате на их месте остаются «дырки». Освободившиеся же электроны блуждают по кристаллической решетке как носители электрического тока. Встретив очередную «дырку», они заполняют ее.

 

Однако в чистом кремнии таких свободных электронов слишком мало из-за крепких связей атомов в кристаллической решетке. Совсем другое дело – кремний с примесью фосфора. Для высвобождения несвязанных электронов в атомах фосфора требуется приложить значительно меньшее количество энергии.

 

Большая часть таких электронов становится свободными носителями, которые можно эффективно направлять и использовать для получения электричества. Процесс добавления примесей для улучшения химических и физических свойств вещества называется легированием.

 

Кремний, легированный атомами фосфора, становится электронным полупроводником n-типа (от слова «negative», из-за отрицательного заряда электронов).  

 

Кремний также легируют бором, у которого всего три электрона во внешней оболочке. В результате получается полупроводник p-типа (от «positive»), в котором возникают свободные положительно заряженные «дырки».

 

Устройство солнечной батареи

Что же произойдет, если соединить полупроводник n-типа с полупроводником p-типа? В первом из них образовалось множество свободных электронов, а во втором – много дырок. Электроны стремятся как можно быстрее заполнить дырки, но если это произойдет, оба полупроводника станут электрически нейтральными.

 

Вместо этого при проникновении свободных электронов в полупроводник p-типа, область на стыке обоих веществ заряжается, образуя барьер, перейти который не так просто. На границе p-n перехода возникает электрическое поле.

 

Энергии каждого фотона солнечного света хватает обычно на высвобождение одного электрона, а значит и на образование одной лишней дырки. Если это происходит вблизи p-n перехода, электрическое поле посылает свободный электрон на n-сторону, а дырку – на p-сторону. 

 

Таким образом, равновесие нарушается еще больше, и если приложить к системе внешнее электрическое поле, свободные электроны потекут на p-сторону, чтобы заполнить дырки, создавая электрический ток. 

 

К сожалению, кремний довольно хорошо отражает свет, а значит, значительная часть фотонов пропадает втуне. Чтобы уменьшить потери, фотоэлементы покрывают антибликовым покрытием. Наконец, чтобы защитить солнечную батарею от дождя и ветра, ее также принято покрывать стеклом. 

 

Самое большое в мире судно на солнечных батареях PlanetSolar

©PlanetSolar/ Philip Plisson

 

Коэффициент полезного действия современных солнечных батарей не слишком высок. Большинство из них эффективно перерабатывают от 12 до 18 процентов попадающего на них солнечного света. Лучшие образцы перешли 40-процентный барьер КПД. 

 

naked-science.ru