ЭЛЕКТРОСАМ.РУ. Блок питание


Блок питания - это... Что такое Блок питания?

Блок питания

Промышленные БП Siemens SITOP Power 24 В постоянного тока в качестве вторичного источника электропитания средств автоматизации технологических процессов.

Блок питания (БП) — устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети. Чаще всего блоки питания преобразуют переменный ток сети 220 В частотой 50 Гц (для России, в других странах используют иные уровни и частоты) в заданный постоянный ток.

Трансформаторные БП

Схема простейшего трансформаторного БП c двухполупериодным выпрямителем

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ, стабилизаторы напряжения и тока.

Габариты трансформатора

Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла):

( 1 / n ) ~ f * S * B

где n - число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin ( f * t ), в производной f выносится за скобку), f - частота переменного напряжения, S - площадь сечения магнитопровода, B - индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.

Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.

Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n. На практике принята эвристика n = ( от 55 до 70 ) / S в см^2.

Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).

Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.

Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).

Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.

Достоинства трансформаторных БП

  • Простота конструкции
  • Надёжность
  • Доступность элементной базы
  • Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих)

Недостатки трансформаторных БП

  • Большой вес и габариты, особенно при большой мощности
  • Металлоёмкость
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Импульсные БП

Принципиальная схема простейшего однотактного импульсного БП

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

Достоинства импульсных БП

Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

  • меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме;
  • значительно более высоким КПД (вплоть до 90-98%) за счет того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (т.е. либо включен, либо выключен) потери энергии минимальны;
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надежностью. (Блоки питания вычислительной техники, оргтехники, бытовой техники почти исключительно импульсные).
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира - Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.

Недостатки импульсных БП

  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
  • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

Смотри также

Ссылки

Литература

  • Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17 изд. — М.: «Вильямс», 2007. — С. 1181-1256. — ISBN 0-7897-3404-4

dic.academic.ru

Блоки питания. Виды и работа. Особенности и применение

Вторичные источники питания являются неотъемлемой частью конструкции любого радиоэлектронного устройства. Они предназначены для того, чтобы преобразовывать переменное или постоянное напряжение электросети или аккумулятора в постоянное или переменное напряжение, требуемое для работы устройства, это блоки питания.

Источники питания бывают не только включены в схему какого-либо устройства, но и могут выполнятся в виде отдельного блока и даже занимать целые цеха электроснабжения.

К блокам питания предъявляется несколько требований. Среди них: высокий КПД, высокое качество выходного напряжения, наличие защит, совместимость с сетью, небольшие размеры и масса и др.

Среди задач блока питания могут числится:

  • Передача электрической мощности с минимумом потерь;
  • Трансформация одного вида напряжения в другое;
  • Формирование частоты отличной от частоты тока источника;
  • Изменение величины напряжения;
  • Стабилизация. Блок питания должен на выходе выдавать стабильный ток и напряжение. Эти параметры не должны превышать или быть ниже определенного предела;
  • Защита от короткого замыкания и других неисправностей в источнике питания, которые могут привести к поломке устройства, которое обеспечивает блок питания;
  • Гальваническая развязка. Метод защиты от протекания выравнивающих и других токов. Такие токи могут приводить к поломкам оборудования и поражать людей.

Но зачастую перед блоками питания в бытовых приборах стоят только две задачи – преобразовывать переменное электрическое напряжение в постоянное и преобразовывать частоту тока электросети.

Среди блоков питания наиболее распространены два типа. Они различаются по конструкции. Это линейные (трансформаторные) и импульсные блоки питания.

Линейные блоки питания

Изначально источники питания изготавливались только в таком виде. Напряжение в них преобразовывается силовым трансформатором. Трансформатор понижает амплитуду синусоидальной гармоники, которая затем выпрямляется диодным мостом (бывают схемы с одним диодом). Диоды преобразуют ток в пульсирующий. А далее пульсирующий ток сглаживается с помощью фильтра на конденсаторе. В конце ток стабилизируется с помощью триода.

Чтобы просто понять, что происходит, представьте себе синусоиду – именно так выглядит форма напряжения, поступающего в наш блок питания. Трансформатор как бы сплющивает эту синусоиду. Диодный мост горизонтально рубит ее пополам и переворачивает нижнюю часть синусоиды наверх. Уже получается постоянное, но все еще пульсирующее напряжение. Фильтр конденсатора доделывает работу и «прижимает» эту синусоиду до такой степени, что получается почти прямая линия, а это и есть постоянный ток. Примерно так, возможно, чересчур просто и грубо, можно описать работу линейного блока питания.

Плюсы и минусы линейных БП

К преимуществам относится простота устройства, его надежность и отсутствие высокочастотных помех в отличие от импульсных аналогов.

К недостаткам можно отнести большой вес и размер, увеличивающиеся пропорционально мощности устройства. Также триоды, идущие в конце схемы и стабилизирующие напряжение снижают КПД устройства. Чем стабильнее напряжение, тем большие его потери будут на выходе.

Импульсные блоки питания

Импульсные БП такой конструкции появились в 60-ых годах прошлого века. Они работают по принципу инвертора. То есть, не только преобразуют постоянное напряжение в переменное, но и меняют его величину. Напряжение из электросети попадая в прибор выпрямляется входным выпрямителем. Затем амплитуда сглаживается входными конденсаторами. Получаются высокочастотные импульсы прямоугольной формы с определенным повторением и длительностью импульса.

Дальнейший путь импульсов зависит от конструкции блока питания:

  1. В блоках с гальванической развязкой импульс попадает в трансформатор.
  2. В БП без развязки импульс идет сразу на выходной фильтр, который срезает нижние частоты.
Импульсный БП с гальванической развязкой

Высокочастотные импульсы из конденсаторов попадают в трансформатор, который отделяет одну электрическую цепь от другой. В этом и заключается суть гальванической развязки. Благодаря высокой частотности сигнала эффективность трансформатора повышается. Это позволяет снизить в импульсных БП массу трансформатора и его размеры, а, следовательно, и всего устройства. В импульсных трансформаторах в качестве сердечника используются ферромагнитные соединения. Это также позволяет снизить габариты устройства.

Конструкция такого типа предполагает преобразование тока в три этапа:

  1. Широтно-импульсный модулятор;
  2. Транзисторный каскад;
  3. Импульсный трансформатор.
Что такое широтно-импульсный модулятор

По-другому этот преобразователь называется ШИМ-контроллер. Его задача состоит в том, чтобы изменять время, в течении которого будет подаваться импульс прямоугольной формы. Модулятор меняет время, в течении которого импульс остается включенным. Он меняет время, в которое импульс не подается. Но частота подачи при этом остается одинаковой.

Как стабилизируется напряжение в импульсных БП

Во всех импульсных БП реализован вид обратной связи, при котором с помощью части выходного напряжения компенсируется влияние входного напряжения на систему. Это позволяет стабилизировать случайные входные и выходные изменения напряжения

В системах с гальванической развязкой для создания отрицательной обратной связи применяются оптроны. В БП без развязки обратная связь реализована делителем напряжения.

Плюсы и минусы импульсных БП

Из плюсов можно выделить меньшую массу и размеры. Высокий КПД, за счет снижения потерь, связанных с процессами перехода в электрических цепях. Меньшая цена в сравнении с линейными БП. Возможность использования одних и тех же БП в разных странах мира, где параметры электросети отличаются между собой. Наличие защиты от короткого замыкания.

Недостатками импульсных БП является их невозможность работы на слишком высоких или слишком низких нагрузках. Не подходят для отдельных видов точных устройств, поскольку создают радиопомехи.

Применение

Линейные БП активно вытесняются их импульсными аналогами. Сейчас линейные БП можно встретить в стиральных машинах, СВЧ-печах, системах отопления.

Импульсные БП применяются почти везде: в компьютерной технике и телевизорах, в медицинской технике, в большинстве бытовых приборов, в оргтехнике.

Похожие темы:

 

electrosam.ru

Блок питания системного блока | Для дома, для семьи

Здравствуйте уважаемые читатели сайта sesaga.ru. Этой статьей я начинаю цикл постов о персональном компьютере, так как тема эта довольно обширная, а начнем мы с самых азов, читать придется много. А я в свою очередь буду стараться излагать материал достаточно понятно и в тоже время интересно. Наберитесь терпения, а когда мы придем на финиш, Вас уже никто не посмеет назвать «чайником».

Начнем с системного блока, или как его называют продвинутые юзеры «системник», а мы по старинке «процессор». Из себя он представляет небольшой ящик, внутри которого находится куча всяких проводов, приспособлений и еще много чего не понятного, которое на компьютерном языке называется железом. Вот с ним мы и начнем разбираться.

Стандартный минимальный набор любого системного блока обычно состоит:1. Блок питания2. Процессор + кулер3. Видеокарта4. Модули оперативной памяти5. Жесткие диски6. Оптический дисковод7. Системная (материнская) плата.А теперь давайте ближе познакомимся с каждым элементом отдельно.

Блок питания.

Это один из самых главных элементов системного блока, так как без питания вся электронная начинка становится просто кучей железа, поэтому к его выбору отнеситесь серьезно. На рисунке показан стандартный блок питания, который устанавливается во всех системных блоках.

Размещается он в верхней части системного блока, и предназначен для преобразования напряжения сети 220В переменного тока в напряжение постоянного тока, которое необходимо для работы компьютера. С внешней стороны в разъем (2) подключается шнур питания 220 вольт, а с внутренней от него отходит пучок проводов (5) уже с нужным напряжением 3.3, 5 и 12 вольт, на конце которых имеются разъемы (5), предназначенные для подключения внутренних элементов компьютера.

Выключателем (1) можно включать или отключать блок питания, вентилятор (4) осуществляет забор воздуха в системный блок через его штатные отверстия в корпусе, и, выбрасывая его из системного блока, способствует дополнительному перемешиванию воздушного потока внутри компьютера, попутно охлаждая свои радиокомпоненты. Переключатель (3) предназначен для переключения входящего напряжения 110 или 220 вольт. Я настоятельно не рекомендую пытаться переключать его, поломкой одного блока питания не отделаетесь, по умолчанию все стоит как надо.

А теперь, собственно разъемы блока питания:1— подается основное напряжение для материнской платы;2— является вспомогательным разъёмом для питания процессора и устанавливается на материнскую плату;3— запитываются периферийные устройства типа старых оптических приводов или жестких дисков IDE, а так же через насадки (6) подается дополнительное питание на видеокарту в зависимости от конфигурации компьютера;4— предназначен для подключения дисководов FDD, так называемые «флоппики»;5— питает устройства с интерфейсом SATA (жесткие диски, оптические приводы).

Надеюсь, Вы уже разобрались, для чего нужен блок питания со всеми его проводами и разъемами. А теперь поговорим о таком важном параметре источников питания – мощности.

На сегодняшний день минимум мощности для компьютерных блоков питания составляет 450-500 Ватт. Эти цифры берутся при суммировании энергопотребления каждым элементом, входящим в комплект компьютера, и конечно 30% запас мощности, а куда же без него. Запас прочности должен быть всегда. Вдруг, Вы со временем захотите более мощную видеокарту, или процессор по шустрей, а это не исключено, значит, нагрузка на блок питания возрастет, а запаса нет. Что? Правильно. Бежим в магазин.

Для среднего домашнего игрового компьютера мощность должна составлять около 600Ватт, брать меньше просто нет смысла, но и увлекаться в сторону увеличения тоже не стоит. Зачем переплачивать за то, что возможно не будет востребовано. Добротный блок сегодня стоит не менее 80 — 130 долларов, брать за меньшую сумму не вижу смысла,так как можете нарваться на подделку.

Скажем, есть два абсолютно одинаковых по всем параметрам блоков питания, только цена у них разная, естественно возникает вопрос, в чем разница? Из личного опыта скажу, когда занимаешься ремонтом радиоаппаратуры, и стоит взглянуть внутрь, сразу видно какого качества сборка того или иного аппарата. Китайские инженеры очень хорошо умеют удешевлять конструкцию аппаратуры, но во вред надежности и времени эксплуатации.

Если на плате вместо половины радиодеталей стоят перемычки, или вообще ничего нет, где должно быть, а использование деталей с заниженными параметрами приводит их к быстрому износу, а следовательно, и выходу из строя. Такой блок питания будет работать, но на пределе своих возможностей, из-за недостаточной нагрузочной способности, а ведь его первостепенная задача надежно обеспечить питанием все компоненты компьютера. Как правило, дешевые модели при выходе из строя тянут за собой более половины компьютера. Так что, при выборе источника питания выбирайте только солидные брэнды, например InWin, FSP, CoolerMaster, Hiper. В интернете всегда можно найти обзоры и тесты этих блоков питания и ориентироваться по ним.

И еще один совет. Выбирая корпус, а они, как правило, идут со встроенными источниками питания, обязательно спросите продавца, или посмотрите сами, какая мощность установленного блока. Если она ниже расчетной, попросите заменить на более мощную модель. Основные параметры указываются на боковой стороне компьютерных блоков питания, на рисунке я выделил прямоугольниками. В верхнем прямоугольнике указаны модель и мощность 430Ватт, а в нижнем, как Вы сами догадались, входные- выходные напряжения, ток нагрузки по каждому напряжению и мощность.

И главное — необходимость качественного источника питания, это, прежде всего залог здоровья и стабильности работы Вашего домашнего друга. Не экономьте на питании.Удачи!

sesaga.ru

Блок питания | Ustroistvo вики

Компьютерный блок питания — вторичный источник электропитания (блок питания, БП), предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, а также преобразования сетевого напряжения до заданных значений.

В некоторой степени блок питания также:

выполняет функции стабилизации и защиты от незначительных помех питающего напряжения;

будучи снабжён вентилятором, участвует в охлаждении компонентов внутри системного блока персонального компьютера.

Мощность, отдаваемая в нагрузку существующими БП, в значительной степени зависит от сложности компьютерной системы и варьируется в пределах от 50 (встраиваемые платформы малых форм-факторов) до 1800 Вт (большинство высокопроизводительных рабочих станций, серверов начального уровня или геймерских машин).

В случае построения кластера, расчёт необходимого количества подводимой энергии учитывает потребляемую кластером мощность, мощность систем охлаждения и вентиляции, КПД которых в свою очередь отличный от единицы. По данным компании APC by Schneider Electric, на каждый Ватт потребляемой серверами мощности, требуется обеспечение 1,06 Ватта систем охлаждения. Особую важность грамотный расчёт имеет при создании ЦОД с резервированием по формуле N+1.

Согласно спецификации ATX 2.x, блок питания настольного компьютера должен обеспечивать выходные напряжения ±5, ±12, +3,3 Вольт, а также +5 Вольт дежурного режима (англ. standby).

Основными силовыми цепями являются напряжения +3.3В, +5В и +12В. Причем, чем выше напряжение, тем большая мощность передается по данным цепям. Отрицательные напряжения питания −5В и −12В допускают небольшие токи и довольно часто материнской платой не используется.

Потенциал −5 В используются только интерфейсом ISA и из-за фактического отсутствия этого интерфейса на современных материнских платах провод −5 В в новых блоках питания должен отсутствовать.

Потенциал −12 В необходим для полной реализации стандарта последовательного интерфейса RS-232, поэтому также часто отсутствует.

Современные электронные компоненты используют напряжение питание не выше +5 Вольт. Наиболее мощные потребители энергии, такие как видеокарта, центральный процессор, северный мост подключаются через размещенные на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5В так и +12В.

Напряжение +12В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12В и 5В целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.

Напряжение +3.3В в блоке питания формируется из напряжения +5В, а потому существует ограничение суммарной потребляемой мощности по ±5В и +3.3В.

Напряжения ±5, ±12, +3,3 Вольт, +5 Вольт дежурного режима используются материнской платой. Для жёстких дисков, оптических приводов, вентиляторов используются только напряжения +5В и +12В.

В большинстве случаев используется полумостовой импульсный блок питания. Блоки питания с накапливающими энергию трансформаторами естественно ограничены по мощности габаритами трансформатора и применяется значительно реже.

В конце 2000-х годов стали появляться модульные БП[1].

Внутреннее устройство

Широко распространённая схема импульсного источника питания состоит из следующих частей:

Входного фильтра, предотвращающего распространение импульсных помех в питающую сеть, для соответствия требованиям законодательства стран по электромагнитным излучениям, в России - требованиям СанПиН 2.2.4.1191—03 «Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы»[2]. Также, входной фильтр предотвращает повреждение входного выпрямительного моста током заряда электролитических конденсаторов при включении БП в электрическую сеть

Входного выпрямительного моста, преобразующего переменное напряжение в постоянное пульсирующее

Фильтра, сглаживающего пульсации выпрямленного напряжения

Полумостового преобразователя на двух биполярных транзисторах

Цепей управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений.

Импульсного высокочастотного трансформатора, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.

Выходные выпрямители. Положительные и отрицательные напряжения (5В и 12В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, по цепи 5В используют диоды Шотки, обладающие малым прямым падением напряжения.

Дросселя выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция — перераспределение энергии между цепями выходных напряжений. Так если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор снизит напряжение по другим цепям. Цепь обратной связи обнаружит снижение выходных цепей, увеличит общую подачу энергии, и восстановит требуемые значения напряжений.

Выходных фильтрующих конденсаторов. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрирует импульсы, тем самым получая необходимые значения напряжений, которые значительно ниже напряжений с выхода трансформатора

Цепи обратной связи, которая поддерживает стабильное напряжение на выходе блока питания.

Отдельного маломощного блока питания +5 Вольт дежурного режима на дискретных элементах или TOPSwitch. Данный источник питания выполнен в виде обратноходового преобразователя

Достоинства такого блока питания:

Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.

Высокий КПД. Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние.

Малые габариты и масса, обусловленные как меньшим выделением тепла на регулирующем элементе, так и меньшими габаритами трансформатора, благодаря тому, что последний работает на более высокой частоте.

Меньшая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность

Возможность включения в сети широкого диапазона напряжений и частот, или даже постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит и её удешевление при массовом производстве.

Недостатки полумостового блока питания на биполярных транзисторах:

При построении схем силовой электроники использование биполярных транзисторов в качестве ключевых элементов снижает общий КПД устройства[3]. Управление биполярными транзисторами требует значительных затрат энергии. Все больше компьютерных блоков питания строится на более дорогих мощных MOSFET транзисторах. Схемотехника таких компьютерных блоков питания реализована как в виде полумостовых схем, так и обратноходовых преобразователей. Для удовлетворения массогабаритных требований к компьютерному блоку питания, в обратноходовых преобразователях используются значительно более высокие частоты преобразования (100-150 кГц).

Большое количество намоточных изделий, индивидуально разрабатываемых для каждого типа блоков питания. Такие изделия снижают технологичность изготовления БП.

Отсутствие активного корректора мощности увеличивает нагрузку на питающую сеть. Более качественные компьютерные блоки питания содержат активный корректор фактора мощности.

Во многих случая недостаточная стабилизация выходного напряжения по каналам. Дроссель групповой стабилизации не позволяет с высокой точностью обеспечивать значения напряжений во всех каналах. Более дорогие блоки питания формируют напряжения ±5Вольт, 3.3Вольт с помощью вторичных преобразователей из канала 12Вольт.

Стандарты

Устаревший (AT)

В блоках питания компьютера AT выключатель питания находится в силовой цепи и обычно выводится на переднюю панель корпуса отдельными проводами, питание дежурного режима с соответствующими цепями отсутствует в принципе. Однако почти все материнские платы стандарта АТ+ATX имели выход управления блоком питания, а блоки питания, в то же время, вход, позволяющий материнской плате стандарта АТ управлять им (включать и выключать). Блок питания стандарта AT подключается к материнской плате двумя шестиконтактными разъёмами, включающимися в один 12-контактный разъём на материнской плате. К разъёмам от блока питания идут разноцветные провода, и правильным является подключение, когда контакты разъёмов с чёрными проводами сходятся в центре разъёма материнской платы.

Современный (ATX)

У 24-контактного ATX разъёма, последние 4 контакта могут быть съёмными, для обеспечения совместимости с 20-контактным гнездом на материнской плате

Выход Допуск Минимум Номинальное Максимум Единица измерения

+12V1DC[4] ±5 % +11.40 +12.00 +12.60 Вольт

+12V2DC[5] ±5 % +11.40 +12.00 +12.60 Вольт

+5 VDC ±5 % +4.75 +5.00 +5.25 Вольт

+3.3 VDC[6] ±5 % +3.14 +3.30 +3.47 Вольт

−12 VDC ±10 % −10.80 −12.00 −13.20 Вольт

+5 VSB ±5 % +4.75 +5.00 +5.25 Вольт

Повышены требования к +5VВС — теперь БП должен отдавать ток не менее 12 А (+3.3 VDC — 16,7 А соответственно, но при этом совокупная мощность не должная превысить 61 Вт) для типовой системы потребления мощностью 160 Вт. Выявился перекос выходной мощности: раньше основным был канал +5 В, теперь были продиктованы требования по минимальному току +12 В. Требования были обусловлены дальнейшим ростом мощности комплектующих (в основном, видеокарты), чьи требования не могли быть удовлетворены линиями +5 В из-за очень больших токов в этой линии.

Виды разъёмов БП / потребителей питания

Разъёмы Molex: ATX12V для подключения основного питания материнской платы, питания периферийного устройства 12 и 5 Вольтами мини- (обычно, дисковод) и обычного размера (molex 8981)

20-контактный разъём основного питания +12V1DCV использовался с первыми материнскими платами форм-фактора ATX, до появления материнских плат с шиной PCI-Express.

24-контактный разъём основного питания +12V1DC (вилка типа MOLEХ 24 Pin Molex Mini-Fit Jr. PN# 39-01-2240 или эквивалентная на стороне БП с контактами типа Molex 44476-1112 (HCS) или эквивалентная; розетка ответной части на материнской плате типа Molex 44206-0007 или эквивалентная) создан для поддержки материнских плат с шиной PCI Express, потребляющей 75 Вт[12]. Большинство материнских плат, работающих на ATX12V 2.0, поддерживают также блоки питания ATX v1.x (4 контакта остаются незадействованными), для этого некоторые производители делают колодку новых четырёх контактов отстёгивывающейся.

24-контактный разъём питания материнской платы ATX12V 2.x

(20-контактный не имеет последних четырёх: 11, 12, 23 и 24)

«Power On» подтягивается на резисторе до уровня +5 Вольт внутри блока питания, и должен быть низкого уровня для включения питания.

«Power good» держится на низком уровне, пока на других выходах ещё не сформировано напряжение требуемого уровня.

Провод «+3.3 V sense» используется для дистанционного зондирования[14].

Контакт 20 (и белый провод) используется для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2. Это напряжение не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.

В 20-контактный версии правые контакты нумеруются с 11 по 20.

Провод +3.3 VDC оранжевого цвета и отводка +3.3 V sense коричневого цвета, подключенные к 13-му контакту, имеют толщину 18 AWG; все остальные — 22 AWG

Также на БП размещаются:

4-контактный разъём ATX12V (именуемый также P4 power connector) — вспомогательный разъём для питания процессора: вилка типа MOLEX 39-01-2040 или эквивалентная с контактами Molex 44476-1112 (HCS) или эквивалентными; розетка ответной части на материнской плате типа Molex 39-29-9042 или эквивалентная. Провод толщиной 18 AWG. В случае построения высокопотребляемой системы (свыше 700 Вт), расширяется до EPS12V (англ. Entry-Level Power Supply Specification) — 8-контактного вспомогательного разъёма для питания материнской платы и процессора 12 В,

4-контактный разъём для дисковода с контактами AMP 171822-4 или эквивалентными. Провод толщиной 20 AWG.

4-контактный разъём для питания периферийного устройства типа жёсткого диска или оптического накопителя с интерфейсом P-ATA: вилка типа MOLEХ 8981-04P или эквивалентная с контактами AMP 61314-1 или эквивалентными. Провод толщиной 18 AWG.

5-контактные разъёмы MOLEX 88751 для подключения питания SATA-устройств состоит из корпуса типа MOLEX 675820000 или эквивалентного с контактами Molex 675810000 или эквивалентными[15].

6- либо 8-контактные разъёмы для питания PCI Express x16 видеокарт.

Блок питания ноутбука

Блок питания для ноутбуков, как правило, применяется для зарядки АКБ, а также для обеспечения ноутбука питанием в обход аккумулятора. По типу исполнения, БП ноутбука чаще всего внешний блок. В виду практики выпускать БП под конкретную модель (серию) ноутбуков и учитывая тот факт, что характеристики разных моделей значительно разнятся, на внешние блоки питания нет единого стандарта, и сами БП обычно не взаимозаменяемы. Также, производители ноутбуков часто используют различные разъёмы питания.

Большинство разъёмов питания ноутбуков выполняются с положительным внутренним проводником, но существуют разъёмы и с обратной полярностью. Обычно ноутбуки питаются от напряжения 18.5В или 19В, хотя встречаются варианты с напряжением 15В, 16В, 19.5В, 20В или даже 24В (Apple). Кроме того, блоки питания отличаются максимальной выходной мощностью. Использование несовместимых блоков питания практически всегда приводит к выходу ноутбуков из строя, за исключением случаев, когда полярность совпадает, разница в питающем напряжении не превышает 0,5 В, и БП достаточно мощный. Разница в конструктивном исполнении штекеров спасает от неправильного подключения не всегда.

Существует инициатива по стандартизации блоков питания для ноутбуков.

ru.ustroistvo.wikia.com

Качественный Блок Питания. Выбор блока питания. Стабильная работа системы

Со всей остротой проблема качественного электропитания настольных компьютеров возникла сравнительно недавно. Еще лет пять назад стандартные ПК потребляли гораздо меньшую мощность, чем сегодня, а 200-ваттный блок питания вполне удовлетворял требованиям по питанию.

Процессоры и видеоадаптеры "двоек" и "троек" потребляли единицы Ватт, прочие устройства, такие как звуковая карта, дополнительный жесткий диск, пишущий оптический привод и пр. в большинстве отсутствовали.

Первые признаки ужесточения требований к питанию ПК появились вместе с выходом процессора Pentium II. Тогда стараниями Intel был введен новый стандарт питания - ATX, предусматривающий, среди прочего, 20-контактный разъем, по которому напряжение подается на материнскую плату. Одна из причин появления нового стандарта заключалась в том, что использовавшийся до этого AT уже не мог обеспечить надлежащего питания по току. Выросла и номинальная мощность - общепринятыми стали 230-250 Вт блоки питания.

Инициатором следующего обновления опять-таки оказалась корпорация Intel. С появлением Р4 выяснилось, что уже и АТХ не способен обеспечить системе надежное питание. Суммарный ток, идущий по цепи 12 В, оказался настолько высоким, что сечения проводника и площади уверенного контакта в разъеме не хватало, чтобы обеспечить надлежащий уровень амплитуды тока. Это могло вызвать искрение и нагрев контактов разъема питания, что вело к поломке материнской платы. Проблема была решена выведением питания процессора на отдельный 4-контактный разъем.

Стандарт получил название АТХ 12V (20 + 4 контактов).

Компания AMD принимала, в общем-то, пассивное участие в процессе изменения стандартов. Долгое время материнские платы для процессоров на ядре K6 продолжали "запитываться" по стандарту АТ, в то время как Intel практически полностью перешел на АТХ. AMD внедрила стандарт ATX только на платформе K7.

К сожалению, AMD до сих пор не приняла стандарт ATX 12V - у владельцев однопроцессорных плат под Socket 462 разъем питания 4-pin не задействован. Это обстоятельство свидетельствует отнюдь не в пользу AMD: Athlon потребляет энергию на уровне Рentium 4, однако питание при этом подается с общего потока, а не по отдельному каналу, как в Рentium 4. Во многом "благодаря" этому обстоятельству система на процессоре AMD более критична к качеству питания, что способствует распространению обывательского мнения, что система на процессорах Intel в целом стабильнее, чем на AMD.

Сколько мне нужно Ватт?

Не вдаваясь в подробности, могу сразу дать "категоричный" ответ - 300 Вт, минимум, который позволит в течение хотя бы нескольких лет не задумываться о покупке нового БП. Так или иначе, мощности основных потребителей питания (процессор, видеокарта, материнская плата и т.д) постоянно растут, да и периферийные устройства отнимают все больший "кусок" общей мощности.

От слов перейдем к цифрам. Попробуем просуммировать данные потребления мощности каждого элемента. Следует, однако, понимать, что составить расчет с точностью до +/- 1 Вт невозможно, поскольку производители очень редко разглашают информацию о потребляемой мощности устройств. К тому же, у каждого свои мерки - устройства разных разработчиков предъявляют разные требования к питанию. Поэтому, расчет делается весьма приблизительный, но с условием "лучше больше, чем меньше". Данные взяты из множества источников, найденных поисковиком:

  • Процессор - 50-90 Вт
  • Материнская плата - 15-30 Вт
  • Память - 5-10 Вт
  • HDD - 7-30 Вт
  • Видеокарта - 10-50 Вт
  • CD-ROM, CD-RW, DVD - 10-25 Вт
  • FDD - 5-7 Вт
  • Sound - 5-10 Вт
  • Кулер - 1-2 Вт
  • Порты - 8-10 Вт

Теперь все суммируем по минимуму и по максимуму: Pmax = 90+30+10+30+50+25+7+10+2+10 = 254 Вт Pmin = 50+15+5+7+10+10+5+5+1+8 = 116 Вт

Таким образом, потребляемая мощность среднестатистического ПК лежит в пределах 116-254 Вт. От этих цифр и стоит отталкиваться. Следует также заметить, на примере процессора, что мощность 90 Вт - это не постоянное, а пиковое, кратковременное потребление в течение короткого времени. К тому же, это значение применимо, скорее, к топовым моделям, младшие потребляют значительно меньше. Например, Celeron 800 по имеющимся данным, потребляет всего 15-20 Вт. Это же касается и жестких дисков, энергопотребление которых достигает максимума при записи, а при чтении и, особенно, в холостом режиме, уменьшается. Еще интереснее ситуация с видеоадаптерами. Видеокарты уровня 50 и более Ватт рассчитаны на слот AGP Pro. Обычный слот AGP 4x имеет предел по питанию в 25 Вт. При необходимости получить большую мощность, производители размещают на видеокарте отдельный разъем питания (как, например, в ATI Radeon 9700 и Voodoo 5). Можно утверждать, что видеокарта в стандартном слоте не выйдет за пределы 25 Вт. К тому же, максимума по мощности она достигает при активном использовании "горячих" возможностей в 3D-играх, а в 2D уровень энергопотребления значительно уменьшается.

"Так что ты нам лапшу вешаешь насчет 300 Вт? Тут при желании и в 100 Вт можно вложиться!" - запротестуют самые нетерпеливые. "В чем подвох?"

А подвох в том, что допустимая мощность БП, например 300 Вт - также не постоянная, а пиковая. БП может ее выдать, но кратковременно, например, при запуске системы. В рабочем же режиме мощность, которую может обеспечить БП, значительно ниже пиковой, указанной в маркировке. Даже "честные" БП имеют рабочую мощность ниже заявленной пиковой.

Упрощенная структура блока питания

Рассмотрим структуру БП:

  1. Выпрямитель сетевого напряжения;
  2. Регулируемый преобразователь напряжения;
  3. Трансформатор;
  4. Выпрямитель и сглаживающий фильтр;
  5. Контур обратной связи.

Входное переменное напряжение Uвх выпрямляется выпрямителем 1 в постоянное. Далее, при помощи преобразователя 2 напряжение преобразуется в импульсное. После чего, вновь проходит через преобразующий фильтр 4 и подается на выход Uвых. Контур обратной связи 5 состоит из множества управляющих и корректирующих цепей. Его работа - поддерживать выходное напряжение на необходимом уровне.

Внешние визуальные признаки отличия качественного от некачественного БП

Масса - главный, а иногда и единственный критерий, по которому пользователь может оценить качество БП, особенно, если он опломбирован. Качественный БП 300 Вт должен весить 2 кг и более. Львиную долю общей массы составляет вес трансформатора, радиаторов, а также заполнение платы элементами (конденсаторы, соленоиды, резисторы)

Если же масса БП в районе одного килограмма - это свидетельствует об уменьшенном размере трансформатора.

Если есть возможность заглянуть внутрь БП, задача упрощается. Даже далекого от электроники пользователя с гуманитарным образованием должны насторожить подобные пустующие места, с перемычками вместо элементов. Это компоненты фильтров пульсаций, или, точнее, место, где они должны быть. Их так же внесет свои коррективы как в общую массу, так и в качество работы БП.

Могу с уверенностью утверждать, что в блоке питания за 30 и более у.е. и массой больше 2 кг (ах, как хочется перечислить поименно!) зияющих пустот вы не увидите - все будет занято.

БП - важная составляющая вентиляции

Мало кто обращал внимание на то, что БП, кроме своих основных функций, выполняет также, "по совместительству", роль вытяжного устройства. Качественный корпус спроектирован таким образом, что внутри происходит непрерывный охлаждающий цикл: холодный воздух снизу с помощью вытяжного устройства поднимается вверх, при этом охлаждая встречающиеся по пути горячие устройства. При этом, чем оптимально расположены воздухозаборные отверстия, тем лучше будет происходить охлаждение. Взгляните на изображения, и вам станет все понятно. Как вы считаете, какой процессор чувствует себя комфортнее? ;-)

Иногда вместо нижних отверстий производители вставляют дополнительный вентилятор, для более эффективной вентиляции.

Методы проверки БП на соответствие характеристик в домашних условиях

Типичная ситуация - компьютерная система, системный блок запитывает БП неизвестного происхождения. Компьютер периодически сбоит. Можно ли выяснить, является ли БП причиной "глюков", или причина в другом железе и сыром софте?

К сожалению, общепринятого метода, который можно было бы воспроизвести в домашних условия, нет. Идеальной моделью для тестирования была бы сама компьютерная система. Но велика вероятность того, что в результате экспериментов ее можно вывести из строя, а значит, тестирование выйдет неоправданно дорогостоящим (прим. ред. - увы!). К тому же, для снятия характеристик понадобятся дорогостоящие приборы. Тем не менее, доступные даже домашнему пользователю способы изучения качества работы БП имеются...

Поверхностную проверку качества блока питания можно также провести по косвенным признакам. Для этого не понадобится дополнительное оборудование и приборы, достаточно будет программы мониторинга материнской платы и какого-нибудь дополнительного энергоемкого комплектующего (например, дополнительный HDD).

1. Этот способ подойдет для случая, когда системный блок опечатан, и вы не имеете возможности не только посмотреть на размер трансформатора вашего БП, но и не знаете даже его названия. Для выполнения теста понадобится какая-нибудь программа, которая бы была в состоянии хорошо нагрузить вашу систему на продолжительное время. Подойдут "тяжелая" демка, рендеринг сложной сцены, открытие-сохранение в Photoshop файла объемом в пару гигабайт, перекодирование фильма с MPEG 2 в MPEG 4. Перед выполнением действия зарегистрируйте текущие уровни напряжения. После выполнения сравните текущие значения напряжений, которые подаются на процессор, память, видеокарту, с первоначальными (сделать это можно с помощью любой утилиты аппаратного мониторинга). Если они значительно изменились, на несколько десятых, значит БП нагрелся, соответственно, для него это тяжелая ноша. Менять!

2. Для этого способа должен быть доступ внутрь корпуса, и нужна дополнительная нагрузка (как мы условились выше, это будет HDD 7200 об/мин). Фиксируются напряжения до установки устройства, и после установки. Опять же, если произойдет изменение в несколько десятых - стоит задуматься о покупке нового БП.

А вот пример 2 в действии. AMD Athlon XP 1700+, EPoX 8KHAL+, RAM DDR 256 MB Samsung, HDD WD 40 GB 7200 об/мин, Video AOpen GF4 MX440 и т.д. В качестве блока питания был установлен один из самых популярных, но далеко не самых качественных БП (я думаю, постоянные посетители COMPOSTER'а догадались, о каком БП идет речь ;-)) Первый скриншот показывает вольтаж текущей системы.

Второй скриншот отображает напряжения после того, как в систему был добавлен еще один HDD 7200 об/мин. Как видно, падение напряжения значительное, что свидетельствует о "потрясающем" качестве блока питания:

Следует отметить, что проверять падение напряжения лучше на платформе AMD, поскольку, как отмечалось выше, в системе на Р4 процессор имеет отдельный вывод питания, соответственно, нагрузка эффективнее распределена и система более стойка к перегрузкам.

Что нас ждет в будущем?

Будущее питания настольных систем весьма прогнозируемо. В ближайшее время вряд ли что-то изменит действующий стандарт ATX 12V - его ресурсы пока позволяют смело ориентироваться на более "прожорливые" системы. Возможно, произойдут некоторые изменения, связанные с популяризацией новых комплектующих и периферийных устройств. Например, использование новых дисковых накопителей с интерфейсом Serial ATA предполагает наличие специального разъема питания. Но это, как мне кажется, не приведет к созданию принципиально нового стандарта: будет осуществлена ревизия существующего с учетом требований, например ATX 2.04 или ATX 12V-S: Главные колодки будут неизменными. Даже в случае переворота в "процессоростроении" у Intel есть козырь в рукаве - широко распространенный серверный стандарт EPS 12V, который при желании может быть переведен в разряд десктопных.

У AMD будущее более туманно. Ресурсы питания по стандарту ATX практически исчерпаны. У AMD есть два пути - либо принять стандарт ATX 12V, либо разработать собственный. По разработке собственного у AMD есть печальный опыт, правда только в секторе дуальных систем. Компанией продвигался стандарт ATX-GES, но он не набрал должной популярности, в первую очередь, из-за несовместимости с другими платформами и высокой стоимостью. Поэтому, даже в дуальных системах AMD скорее всего перейдет на стандарт EPS 12V.

P.S. Большинство выводов сделано автором на основе личного опыта, умозаключений и эмпирических результатов, которые, разумеется, не могут быть всеобъемлющими, и не должны восприниматься, как аксиоматическая истина.

Когда версталась статья, свершилось то, чего так долго ждали! В свет выпущена первая платформа под процессор AMD, с питанием ATX 12V. Это плата EPoX 8RGA+, на чипсете nForce2.

Остается надеяться, что другие производители материнских плат последуют примеру EpoX, что, несомненно положительно отразится на росте популярности AMD-систем.

www.windxp.com.ru