Аргон. Элемент аргон


Аргон - это... Что такое Аргон?

Внешний вид простого вещества Свойства атома Имя, символ, номер Атомная масса(молярная масса) Электронная конфигурация Радиус атома Химические свойства Ковалентный радиус Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Плотность при т. п.
Температура плавления Температура кипения Теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества Структура решётки Параметры решётки Температура Дебая Прочие характеристики Теплопроводность

Арго́н / Argon (Ar), 18

39,948 а. е. м. (г/моль)

[Ne] 3s2 3p6

? (71)[1]пм

106[1]пм

154[1]пм

4,3 (шкала Полинга)

0

0

1519,6(15,75) кДж/моль (эВ)

1,784·10−3 г/см³

1,40 г/см³

83,8 К (-189,35 °C)

87,3 К (-185,85 °C)

6,52 кДж/моль

20,79[2] Дж/(K·моль)

24,2 см³/моль

кубическая гранецентрированая

5,260 Å

85 K

(300 K) 0,0177 Вт/(м·К)

Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) — инертный одноатомный газ без цвета, вкуса и запаха.

История

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха[3][4][5]. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота[3].

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос[3][4].

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы)[4].

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней[3].

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа[3].

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество[3].

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества[3].

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов[3].

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %)[3][4]. Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон[3].

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии[3].

Происхождение названия

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность[3].

Распространённость

Во Вселенной

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе[6].

Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения[7].

Земная кора

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе[4][7], его запасы в атмосфере оцениваются в 4·1014 т[2][4]. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона)[4][7].

Содержание аргона в литосфере — 4·10−6 % по массе[2]. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5·10−5 — 9,7·10−5 %. Его содержание в Мировом океане оценивается в 7,5·1011 т, а в изверженных породах земной оболочки — 16,5·1011 т[7].

Определение

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, h3, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа[2].

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м3

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[8]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Изотопы

Аргон представлен в земной атмосфере тремя стабильными изотопами: [4][7]. Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона[7].

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C аргон конденсируется, при −189,4 °C — кристаллизуется.

Применение

Заполненная аргоном и парами ртути газоразрядная трубка

Ниже перечислены области применения аргона:

  • в аргоновых лазерах
  • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
  • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов
  • в качестве плазмаобразователя в плазматронах при сварке и резке
  • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
  • в качестве огнетушащего вещества в газовых установках пожаротушения
  • в медицине во время операций для очистки воздуха и разрезов, так как аргон почти не образует химических соединений
  • в качестве составной части атмосферы эксперимента Марс-500[9] с целью снижения уровня кислорода для предотвращения пожара на борту космического корабля при путешествии на Марс
  • из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков:
  • высокая цена газа (кроме этого нужна отдельная система для аргона)

Биологическая роль

Аргон не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа[10].

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания)[11].

Примечания

Ссылки

dis.academic.ru

Аргон - это... Что такое Аргон?

Внешний вид простого вещества Свойства атома Имя, символ, номер Атомная масса(молярная масса) Электронная конфигурация Радиус атома Химические свойства Ковалентный радиус Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Плотность при т. п. Температура плавления Температура кипения Теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества Структура решётки Параметры решётки Температура Дебая Прочие характеристики Теплопроводность

Арго́н / Argon (Ar), 18

39,948 а. е. м. (г/моль)

[Ne] 3s2 3p6

? (71)[1]пм

106[1]пм

154[1]пм

4,3 (шкала Полинга)

0

0

1519,6(15,75) кДж/моль (эВ)

1,784·10−3 г/см³

1,40 г/см³

83,8 К (-189,35 °C)

87,3 К (-185,85 °C)

6,52 кДж/моль

20,79[2] Дж/(K·моль)

24,2 см³/моль

кубическая гранецентрированая

5,260 Å

85 K

(300 K) 0,0177 Вт/(м·К)

Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) — инертный одноатомный газ без цвета, вкуса и запаха.

История

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха[3][4][5]. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота[3].

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос[3][4].

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы)[4].

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней[3].

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа[3].

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество[3].

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества[3].

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов[3].

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %)[3][4]. Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон[3].

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии[3].

Происхождение названия

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность[3].

Распространённость

Во Вселенной

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе[6].

Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения[7].

Земная кора

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе[4][7], его запасы в атмосфере оцениваются в 4·1014 т[2][4]. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона)[4][7].

Содержание аргона в литосфере — 4·10−6 % по массе[2]. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5·10−5 — 9,7·10−5 %. Его содержание в Мировом океане оценивается в 7,5·1011 т, а в изверженных породах земной оболочки — 16,5·1011 т[7].

Определение

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, h3, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа[2].

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м3

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[8]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Изотопы

Аргон представлен в земной атмосфере тремя стабильными изотопами: [4][7]. Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона[7].

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C аргон конденсируется, при −189,4 °C — кристаллизуется.

Применение

Заполненная аргоном и парами ртути газоразрядная трубка

Ниже перечислены области применения аргона:

  • в аргоновых лазерах
  • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
  • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов
  • в качестве плазмаобразователя в плазматронах при сварке и резке
  • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
  • в качестве огнетушащего вещества в газовых установках пожаротушения
  • в медицине во время операций для очистки воздуха и разрезов, так как аргон почти не образует химических соединений
  • в качестве составной части атмосферы эксперимента Марс-500[9] с целью снижения уровня кислорода для предотвращения пожара на борту космического корабля при путешествии на Марс
  • из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков:
  • высокая цена газа (кроме этого нужна отдельная система для аргона)

Биологическая роль

Аргон не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа[10].

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания)[11].

Примечания

Ссылки

dikc.academic.ru

Аргон - это... Что такое Аргон?

Внешний вид простого вещества Свойства атома Имя, символ, номер Атомная масса(молярная масса) Электронная конфигурация Радиус атома Химические свойства Ковалентный радиус Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Плотность при т. п. Температура плавления Температура кипения Теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества Структура решётки Параметры решётки Температура Дебая Прочие характеристики Теплопроводность

Арго́н / Argon (Ar), 18

39,948 а. е. м. (г/моль)

[Ne] 3s2 3p6

? (71)[1]пм

106[1]пм

154[1]пм

4,3 (шкала Полинга)

0

0

1519,6(15,75) кДж/моль (эВ)

1,784·10−3 г/см³

1,40 г/см³

83,8 К (-189,35 °C)

87,3 К (-185,85 °C)

6,52 кДж/моль

20,79[2] Дж/(K·моль)

24,2 см³/моль

кубическая гранецентрированая

5,260 Å

85 K

(300 K) 0,0177 Вт/(м·К)

Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) — инертный одноатомный газ без цвета, вкуса и запаха.

История

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха[3][4][5]. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота[3].

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос[3][4].

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы)[4].

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней[3].

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа[3].

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество[3].

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества[3].

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов[3].

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %)[3][4]. Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон[3].

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии[3].

Происхождение названия

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность[3].

Распространённость

Во Вселенной

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе[6].

Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения[7].

Земная кора

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе[4][7], его запасы в атмосфере оцениваются в 4·1014 т[2][4]. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона)[4][7].

Содержание аргона в литосфере — 4·10−6 % по массе[2]. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5·10−5 — 9,7·10−5 %. Его содержание в Мировом океане оценивается в 7,5·1011 т, а в изверженных породах земной оболочки — 16,5·1011 т[7].

Определение

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, h3, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа[2].

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м3

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[8]. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Изотопы

Аргон представлен в земной атмосфере тремя стабильными изотопами: [4][7]. Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Вероятные источники происхождения изотопов 36Ar и 38Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона[7].

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C аргон конденсируется, при −189,4 °C — кристаллизуется.

Применение

Заполненная аргоном и парами ртути газоразрядная трубка

Ниже перечислены области применения аргона:

  • в аргоновых лазерах
  • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов
  • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов
  • в качестве плазмаобразователя в плазматронах при сварке и резке
  • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938, в качестве пропеллента и упаковочного газа
  • в качестве огнетушащего вещества в газовых установках пожаротушения
  • в медицине во время операций для очистки воздуха и разрезов, так как аргон почти не образует химических соединений
  • в качестве составной части атмосферы эксперимента Марс-500[9] с целью снижения уровня кислорода для предотвращения пожара на борту космического корабля при путешествии на Марс
  • из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков:
  • высокая цена газа (кроме этого нужна отдельная система для аргона)

Биологическая роль

Аргон не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа[10].

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания)[11].

Примечания

Ссылки

dik.academic.ru

Аргон – это особенный элемент периодической системы

Домашний уют 24 ноября 2016

Все мы знаем, что аргон применяется для сварки разных металлов, но не каждый задумывался, о том, что представляет собой этот химический элемент. А между тем его история богата событиями. Что характерно, аргон - это исключительный экземпляр периодической таблицы Менделеева, который не имеет аналогов. Сам ученый удивлялся в свое время, как он вообще мог сюда попасть.

В атмосфере присутствует примерно 0,9 % этого газа. Как и азот, он имеет нейтральный характер без цвета и запаха. Для поддержания жизни он не подходит, но зато просто незаменим в некоторых областях человеческой деятельности.

Небольшой экскурс в историю

Впервые его обнаружил англичанин и физик по образованию Г. Кавендиш, который заметил присутствие в воздухе чего-то нового, стойкого к химическому воздействию. К сожалению, Кавендиш так и не узнал природу нового газа. Чуть более ста лет спустя это заметил и другой ученый – Джон Уильям Страт. Он пришел к выводу, что в азоте из воздуха есть какая-то примесь газа неизвестного происхождения, но аргон это или что-то еще, он пока не мог понять.

 Аппарат аргон

При этом газ не вступал в реакцию с различными металлами, хлором, кислотами, щелочами. То есть с химической точки зрения носил инертный характер. Еще одной неожиданностью стало открытие – молекула нового газа включает в себя лишь один атом. А на тот момент подобный состав газов был еще неизвестен.

Публичное сообщение о новом газе привело в шок многих ученых со всего мира – как можно было проглядеть новый газ в воздухе на протяжении многих научных исследований и опытов?! Но в открытие поверили не все ученые, включая Менделеева. Судя по атомной массе нового газа (39,9), он должен расположиться между калием (39,1) и кальцием (40,1), но позиция уже была занята.

Как уже упоминалось, аргон - это газ с богатой и детективной историей. На некоторое время он был забыт, но после открытия гелия новый газ признали официально. Было решено отвести для него отдельную нулевую позицию, расположенную в между галогенов и щелочных металлов.

Свойства

Среди прочих инертных газов, которые входят в тяжелую группу, аргон считается самым легким. Его масса превышает вес воздуха в 1,38 раза. В жидкое состояние газ переходит при температуре -185,9 °С, а при -189,4 °С и нормальном давлении твердеет.

Аргон в баллонах

От гелия и неона аргон отличается тем, что способен растворяться в воде – при температуре 20 градусов в количестве 3,3 мл в ста граммах жидкости. Но в ряде органических растворов газ растворяется лучше. Воздействие электрического тока заставляет его светиться, благодаря чему он стал широко применяться в осветительном оборудовании.

Биологами обнаружено другое полезное свойство, которым обладает аргон. Это своего рода среда, где растение прекрасно себя чувствует, что доказано опытами. Так, находясь в атмосфере газа, посаженые семена риса, кукурузы, огурцов и ржи дали свои ростки. В другой атмосфере, где 98 % приходится на аргон и 2 % - на кислород, хорошо прорастает такая овощная культура, как морковь, салат и лук.

Что особенно характерно, содержание этого газа в земной коре намного больше, чем других элементов, находящихся в его группе. Его примерное содержание – 0,04 г на одну тонну. Это в 14 раз превышает количество гелия и в 57 раз – неона. Что касается окружающей нас Вселенной, его там еще больше, в особенности на разных звездах и в туманностях. По некоторым подсчетам, аргона на просторах космоса больше, чем хлора, фосфора, кальция или калия, которых полно на Земле.

Получение газа

Тот аргон в баллонах, в которых мы его чаще встречаем, является неисчерпаемым источником. К тому же он в любом случае возвращается в атмосферу в силу того, что при использовании не меняется в физическом или химическом плане. Исключением могут быть случаи расхода малого количества изотопов аргона на получение новых изотопов и элементов в ходе ядерных реакций.

Сварочный аргон

В промышленности газ получают путем разделения воздуха на кислород и азот. В результате чего и рождается газ как побочный продукт. Для этого используется специальное промышленное оборудование двукратной ректификации с двумя колоннами высокого и низкого давления и промежуточным конденсатором-испарителем. Помимо этого, для получения аргона могут быть использованы отходы аммиачного производства.

Область применения

Сфера применения аргона насчитывает несколько областей:

  • пищевая промышленность;
  • металлургия;
  • научные исследования и опыты;
  • сварочные работы;
  • электроника;
  • автомобильная промышленность.

Этот нейтральный газ находится внутри электрических лапочек, что замедляет испарение вольфрамовой спирали внутри. Благодаря этому свойству широко применяется основанный на данном газе сварочный аппарат. Аргон позволяет надежно соединять детали из алюминия и дюраля.

Аргон это

Широкое распространение газ получил при создании защитной и инертной атмосферы. Это обычно необходимо для термической обработки тех металлов, которые легко подвержены окислению. В атмосфере аргона хорошо растут кристаллы для получения полупроводниковых элементов или сверхчистых материалов.

Преимущества и недостатки применения аргона в сварке

Касательно области сварки аргон дает определенные преимущества. Прежде всего, металлические детали в ходе сварки не так сильно нагреваются. Это позволяет избежать деформации. К прочим достоинствам относятся:

  • надежная защита сварного шва;
  • скорость аргонной сварки на порядок выше;
  • процесс легко контролировать;
  • сварку можно механизировать либо полностью перевести в автоматический режим;
  • возможность соединять детали из разнородных металлов.

В то же время сварочный аргон подразумевает и ряд недостатков:

  • при сварке возникает ультрафиолетовое излучение;
  • для использования высокоамперной дуги необходимо качественное охлаждение;
  • сложная работа на открытом воздухе или сквозняке.

Тем не менее при наличии стольких достоинств трудно недооценить значение аргонной сварки.

Меры предосторожности

При использовании аргона стоит проявлять осторожность. Хоть газ нетоксичен, но способен вызывать удушье, замещая собой кислород или сжижая его. Поэтому крайне важно контролировать объем O2 в воздухе (не менее 19 %) при помощи специальных приборов, ручных или автоматических.

Температура аргона

Работа с жидким газом требует предельной осторожности, поскольку низкая температура аргона может вызвать сильное обморожение кожного покрова и повреждение глазной оболочки. Необходимо использовать очки и спецодежду. Лицам, которым необходимо проводить работы в аргонной атмосфере, нужно надевать противогазы либо прочие изолирующие кислородные приборы.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Финансы - это структурный элемент экономической системыНовости и общество Финансы - это структурный элемент экономической системы

Система финансов представлена упорядоченной совокупностью некоторых финансовых отношений. Звенья такой системы объединены в три основных блока, у каждого из которых есть своя внутренняя структура:

Периодическая система Менделеева. Химические элементы периодической системыОбразование Периодическая система Менделеева. Химические элементы периодической системы

Девятнадцатый век в истории человечества – век, в который многие науки реформировались, в том числе и химия. Именно в это время появилась периодическая система Менделеева, а вместе с ней - и периодический закон....

Методист - это ключевой элемент в современной системе образованияКарьера Методист - это ключевой элемент в современной системе образования

От чего зависит качество образования в учебных заведениях? Многие думают, что ответ кроется в материальной базе учреждения, стремлении учеников или настойчивости преподавателей. Но редко кто вспоминает о методистах. И...

Элемент системы - это что такое? Примеры элементов системы. Элементы экономической системыНовости и общество Элемент системы - это что такое? Примеры элементов системы. Элементы экономической системы

Развитие общества, экономики, ход политических процессов во многом осуществляются по системным принципам. Их сущность предполагает следование тех или иных элементов или субъектов определенным закономерностям, выполнен...

Осно - это... Особенности общей системы налогообложенияФинансы Осно - это... Особенности общей системы налогообложения

Общая система отличается достаточно большим перечнем отчислений, которые вменяются в обязанность хозяйствующему субъекту. Некоторые предприятия добровольно выбирают такой режим, некоторые вынуждены это сделать. Рассмо...

Трансмиссия - это важнейший элемент каждого автомобиляАвтомобили Трансмиссия - это важнейший элемент каждого автомобиля

Трансмиссия - это важнейший элемент каждого автомобиля, обеспечивающий передачу, распределение и изменение крутящего момента от двигателя на ведущие колеса. И если хотя бы одна шестерня в ней выйдет из строя, продолжа...

Номенклатура продукции - это... Особенности понятияБизнес Номенклатура продукции - это... Особенности понятия

Номенклатура продукции – это, простыми словами, список наименований (типов) изделий, создаваемых в разных народнохозяйственных отраслях. Его разработка имеет особое практическое значение. Рассмотрим...

Обслуживание - это... Особенности сервисаБизнес Обслуживание - это... Особенности сервиса

Сегодня в условиях интенсивного развития рыночной системы ключевое значение приобретает эффективное, доходное хозяйствование при абсолютной экономической самостоятельности компаний. Это, в свою очередь, повышает роль ...

Доверительный разговор - это... Особенности организации доверительного разговораБизнес Доверительный разговор - это... Особенности организации доверительного разговора

Для того чтобы правильно оценить возможность возникновения такого действи...

Оптовая торговля – это важный элемент в экономике любой страныБизнес Оптовая торговля – это важный элемент в экономике любой страны

Рынок не стоит на месте, он находится в постоянном развитии с учетом потребностей населения. Оптовая торговля – это деятельность по реализации товаров с услугами тем, кто их приобретает для перепродажи или дальн...

monateka.com

Аргон

Арго́н — химический элемент с атомным номером 18. Третий по распространённости элемент в атмосфере — 0,93 % по объёму.

Аргон(Ar) Свойства атома Химические свойства Термодинамические свойства Кристаллическая решётка
Атомный номер 18
Внешний вид
Атомная масса(молярная масса) 39,948 а. е. м. (г/моль)
Радиус атома 2- пм
Энергия ионизации(первый электрон) 1519,6(15,75) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s2 3p6
Ковалентный радиус 98 пм
Радиус иона n/a пм
Электроотрицательность(по Полингу) 0,0
Электродный потенциал 0
Степени окисления n/a
Плотность (при -186 °C)1,40 г/см³
Удельная теплоёмкость 0,138 Дж/(K·моль)
Теплопроводность 0,0177 Вт/(м·K)
Температура плавления 83,8 K
Теплота плавления n/a кДж/моль
Температура кипения 87,3 K
Теплота испарения 6,52 кДж/моль
Молярный объём 24,2 см³/моль
Структура решётки кубическая гранецентрированая
Период решётки 5,260 Å
Отношение c/a n/a
Температура Дебая 85,00 K

История

К открытию аргона привело обнаруженное в 1892 году английским физиком Лордом Джоном Рэлеем небольшое (всего на 0,13 %) превышение плотности азота, выделяемого из воздуха, над плотностью «химического» азота, возникающего при термическом разложении нитрита аммония Nh5NO2. Вместе с другим английским физиком Уильям Рамзаем, Лорд Джон Рэлей в 1894 году выделил из воздуха примесь более тяжёлого (по сравнению с азотом) газа, который отличался одноатомным составом молекул и практически полной химической недеятельностью (аргон не вступает ни в какие химические реакции). Затем были открыты остальные инертные газы.

Происхождение названия

Именно из-за своей удивительной химической инертности новый газ и получил своё название (греч. αργός — неактивный).

Аргон в природе

Аргон распространён в природе только в свободном виде. В земной коре его содержание составляет 1,2•10-4 %, в морской воде — 0,45•10-4 %. В атмосферном воздухе содержится 0,93 % аргона по объёму (9,34 л в 1м3). Это значительно больше, чем содержание в воздухе всех остальных инертных газов вместе взятых. Воздух служит неиссякаемым источником для получения аргона.

Обращает на себя внимание преобладание в смеси природных нуклидов аргона самого тяжёлого — аргона-40. Это связано с тем, что 40Ar постоянно образуется за счёт распада радиоактивного калия-40. В 1 т калия за год при радиоактивном распаде калия-40 путём захвата орбитального электрона (так называемый электронный захват, или К-захват; на этот тип радиоактивного распада калия-40 приходится 12 % от всех актов распада этого природного радионуклида) образуется всего около 3100 атомов аргона-40. Но калий — один из самых распространённых на Земле элементов, да и время, прошедшее за долгую историю Земли, исчисляется миллиардами лет. Поэтому 40Ar накопился в земной атмосфере в значительных количествах.

Преобладание тяжёлого аргона-40 в природной смеси изотопов этого элемента приводит к тому, что атомная масса элемента аргона оказывается немного выше, чем следующего за ним в периодической системе элемента калия. Однако, когда Менделеев создавал свою знаменитую таблицу, проблема, как разместить калий и аргон, у него не возникала, так как аргон был открыт спустя почти 30 лет после открытия периодического закона, и в таблицу (в группу, которой тогда присвоили номер ноль) попал только в начале 20-го века. В настоящее время аргон, как и другие инертные газы, включают в восьмую группу периодической системы элементов.

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре -185,9°C аргон конденсируется, при -189,4°С — кристаллизуется.

Свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) –185,9° C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20° C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Как уже говорилось, химических соединений не образует. Однако со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Применение

Аргон широко используют для создания инертной и защитной атмосферы, прежде всего при термической обработке легко окисляющихся металлов (аргоновая плавка, аргоновая сварка и другие). В атмосфере аргона получают кристаллы полупроводников и многие другие сверхчистые материалы. Аргоном часто заполняют электрические лампочки (для замедления испарения вольфрама со спирали). Это же его свойство используется в аргоновой сварке, которая позволяет соединять алюминиевые и дюралевые детали.

При пропускании электрического разряда через стеклянную трубку, заполненную аргоном, наблюдается сине-голубое свечение, что широко используется, например, в светящейся рекламе. В геохронологии по оределению соотношения изотопов 40Ar/40К устанавливают возраст минералов. Также аргон используется в аргоновых лазерах.

Ссылки

mediaknowledge.ru