Закалка стали -- старинная технология для современных материалов. Закалка стали


Закалка стали – способы, температура, правила

Одним из наиболее распространенных способов термообработки металлов является закалка стали. Именно при помощи закаливания формируются требуемые характеристики готового изделия, а ее неправильное выполнение может привести к излишней мягкости металла (непрокаливание) или к его чрезмерной хрупкости (перекаливание). В нашей статье речь пойдет о том, что такое правильная закалка и что нужно сделать, чтобы ее выполнить.

Закалка стали

Закалка стали

Какой бывает закалка металла

О том, что воздействие высокой температуры на металл может изменить его структуру и свойства, знали еще древние кузнецы и активно использовали это на практике. В дальнейшем уже научно было установлено, что закалка изделий, изготовленных из стали, предполагающая нагрев и последующее охлаждение металла, позволяет значительно улучшать механические характеристики готовых изделий, значительно увеличивать срок их службы и даже в итоге уменьшать их вес за счет увеличения прочности детали. Что примечательно, закалка деталей из недорогих сортов стали позволяет придать им требуемые характеристики и успешно использовать вместо более дорогостоящих сплавов.

Смысл процесса, который называется закалка изделий из стальных сплавов, заключается в нагреве металла до критической температуры и его последующем охлаждении. Основная цель, которая преследуется такой технологией термообработки, заключается в повышении твердости и прочности металла с одновременным уменьшением его пластичности.

Существуют различные виды закалки и последующего отпуска, отличающиеся режимами проведения, которые и определяют конечный результат. К режимам закалки относятся температура нагрева, время и скорость его выполнения, время выдержки детали в нагретом до заданной температуры состоянии, скорость, с которой осуществляется охлаждение.

Наиболее важным параметром при закалке металлов является температура нагрева, при достижении которой происходит перестройка атомной решетки. Естественно, что для сталей разных сортов значение критической температуры отличается, что зависит, в первую очередь, от уровня содержания в их составе углерода и различных примесей.

После выполнения закалки повышается как твердость, так и хрупкость стали, а на ее поверхности, потерявшей значительное количество углерода, появляется слой окалины. Толщину этого слоя обязательно следует учитывать для расчета припуска на дальнейшую обработку детали.

Диаграмма состояний Fe-C

Диаграмма состояний железо-углерод

При выполнении закалки изделий из стальных сплавов, очень важно обеспечить заданную скорость охлаждения детали, в противном случае, уже перестроенная атомная структура металла может перейти в промежуточное состояние. Между тем, слишком быстрое охлаждение тоже нежелательно, так как оно может привести к появлению на детали трещин или к ее деформации. Для того, чтобы избежать образования таких дефектов, скорость охлаждения после падения температуры нагретого металла до 200 градусов Цельсия, несколько замедляют.

Для нагрева деталей, изготовленных из углеродистых сталей, используют камерные печи, которые могут прогреваться до 800 градусов Цельсия. Для закалки отдельных марок стали критическая температура может составлять 1250–1300 градусов Цельсия, поэтому детали из них нагреваются в печах другого типа. Удобство закалки сталей таких марок заключается в том, что изделия из них не подвержены растрескиванию при охлаждении, что исключает необходимость в их предварительном прогреве.

Очень ответственно следует подходить к закалке деталей сложной конфигурации, имеющих тонкие грани и резкие переходы. Чтобы исключить растрескивание и коробление таких деталей в процессе нагрева, его следует проводить в два этапа. На первом этапе такую деталь предварительно прогревают до 500 градусов Цельсия и лишь затем доводят температуру до критического значения.

Нагрев стали при закалке токами высокой частоты

Для качественной закалки сталей важно обеспечить не только уровень нагрева, но и его равномерность. Если деталь отличается массивностью или сложной конфигурацией, обеспечить равномерность ее нагрева можно только в несколько подходов. В таких случаях нагревание производится с двумя выдержками, которые необходимы для того, чтобы достигнутая температура равномерно распределилась по всему объему детали. Увеличивается суммарное время нагревания и в том случае, если в печь одновременно помещаются сразу несколько деталей.

Как избежать образования окалины и обезуглероживания при закалке

Многие детали из стали проходят закалку уже после того, как была выполнена их финишная обработка. В таких случаях недопустимо, чтобы поверхность деталей была обезуглерожена или на ней образовалась окалина. Существуют способы закалки изделий из стали, которые позволяют избежать таких проблем. Закалка, выполняемая в среде защитного газа, который нагнетается в полость нагревательной печи, может быть отнесена к наиболее передовому из таких способов. Следует иметь в виду, что используют такой метод лишь в том случае, если печь для нагрева полностью герметична.

На фото виден момент гидросбива на стане горячей прокатки - удаление окалины

На фото виден момент гидросбива на стане горячей прокатки — удаление окалины

Более простым способом, позволяющим избежать обезуглероживания поверхности металла при закалке, является применение чугунной стружки и отработанного карбюризатора. Для того чтобы защитить поверхность детали при нагревании, ее помещают в специальную емкость, в которую предварительно засыпаны эти компоненты. Для предотвращения попадания в такую емкость окружающего воздуха, который может вызвать процессы окисления, снаружи ее тщательно обмазывают глиной.

Если после закалки металла его охлаждают не в масле, а в соляной ванне, ее следует регулярно раскислять (не менее двух раз за смену), чтобы избежать обезуглероживания поверхности детали и появления на ней окисла. Для раскисления соляных ванн могут быть использованы борная кислота, бурая соль или древесный уголь. Последний обычно помещают в специальный стакан с крышкой, в стенках которого имеется множество отверстий. Опускать такой стакан в соляную ванну следует очень осторожно, так как в этот момент на ее поверхности вспыхивает пламя, которое затухает через некоторое время.

Существует простой способ, позволяющий проверить качество раскисления соляной ванны. Для этого в такой ванне нескольких минут (3–5) нагревают обычное лезвие из нержавеющей стали. После соляной ванны лезвие помещают в воду для охлаждения. Если после такой процедуры лезвие не гнется, а ломается, то раскисление ванны прошло успешно. zakalka4

Объемная закалка толстостенных заготовок

Охлаждение стали при закалке

Основу большинства охлаждающих жидкостей, используемых при закалке изделий из сталей, составляет вода. При этом важно, чтобы такая вода не содержала в своем составе примесей солей и моющих средств, которые могут значительно повлиять на скорость охлаждения. Емкость, в которой содержится вода для закалки изделий из металла, не рекомендуется использовать в других целях. Важно также учитывать и то, что для охлаждения металла в процессе закалки, нельзя использовать проточную воду. Оптимальной для охлаждающей жидкости считается температура в 30 градусов Цельсия.

Закалка изделий из стали с использованием для их охлаждения обычной воды, имеет ряд существенных недостатков. Самый главный из них — это растрескивание и коробление деталей после их охлаждения. Как правило, таким способом охлаждения пользуются, когда выполняется цементирование металла, поверхностная закалка стали или термическая обработка деталей простой конфигурации, которые в дальнейшем будут подвергаться финишной обработке.

Для изделий сложной формы, изготовленных из конструкционных сталей, применяют другой тип охлаждающей жидкости – 50%-й раствор каустической соды, нагретый до температуры 60 градусов Цельсия. После охлаждения в таком растворе закаленная сталь приобретает светлый оттенок.

Очень важно при работе с каустической содой соблюдать технику безопасности, обязательно использовать вытяжку, размещаемую над ванной. При опускании раскаленной детали в раствор образуются пары, очень вредные для здоровья человека. Zakalka nerg1

Закалка стали в муфельной печи

Лучшей охлаждающей жидкостью для тонкостенных деталей из углеродистых сталей и изделий, выполненных из легированных сплавов, являются минеральные масла, которые обеспечивают постоянную (изотермическую) температуру охлаждения, вне зависимости от условий окружающей среды. Главное, чего следует избегать при использовании такой технической жидкости, — это попадания в нее воды, что может привести к растрескиванию деталей в процессе их охлаждения. Однако, если в такую охлаждающую жидкость все же попала вода, ее можно легко удалить из нее, нагрев масло до температуры, превышающей температуру кипения воды.

У закалки стали с использованием масла в качестве охлаждающей жидкости есть ряд существенных недостатков, о которых обязательно стоит знать. При контакте масла с раскаленной деталью выделяются пары, вредные для человеческого здоровья, кроме того, масло в этот момент может загореться. У масляной ванны есть и такое свойство: после ее использования на детали остается налет, а сама охлаждающая жидкость со временем теряет свою эффективность.

Все эти факторы следует учитывать при выполнении закалки металлов в масляной среде и принимать следующие меры безопасности:

  • погружать детали в масляную ванну при помощи щипцов с длинными ручками;
  • все работы выполнять в специальной маске из закаленного стекла и в перчатках, изготовленных из толстой ткани с огнеупорными свойствами или из грубой кожи;
  • надежно защищать плечи, шею, грудь рабочей одеждой, изготовленной из толстой огнеупорной ткани.
Охлаждение в масляной ванне

Охлаждение в масляной ванне

Для закалки сталей отдельных марок охлаждение осуществляют при помощи потока воздуха, создаваемого специальным компрессором. Очень важно, чтобы охлаждающий воздух был совершенно сухим, так как содержащаяся в нем влага может вызвать растрескивание поверхности металла.

Существуют способы закалки стали, при которых используют комбинированное охлаждение. К ним обращаются для охлаждения деталей из углеродистых сталей, имеющих сложный химический состав. Суть таких способов закалки заключается в том, что сначала нагретую деталь помещают в воду, где за короткое время (несколько секунд) ее температура снижается до 200 градусов, дальнейшее охлаждение детали проводят уже в масляной ванне, куда ее следует переместить очень оперативно.

Выполнение закалки и отпуска стальных деталей в домашних условиях

Термическая обработка металлических изделий, в том числе поверхностная закалка стали, не только увеличивает твердость и прочность сплава, но и значительно повышает внутренние напряжения в его структуре. Чтобы снять эти напряжения, способные в процессе эксплуатации детали привести к ее поломке, необходимо отпустить изделие из стали.

Следует иметь в виду, что такая технологическая операция приводит к некоторому снижению твердости стали, но увеличивает ее пластичность. Для выполнения отпуска, суть которого состоит в постепенном уменьшении температуры нагретой детали и ее выдерживании при определенном температурном режиме, используются печи, соляные и масляные ванны. Закалка и отпуск стали в домашних условиях

Закалка и отпуск стали в домашних условиях

Температуры, при которых выполняется отпуск, отличаются для различных сортов стали. Так, отпуск быстрорежущих сплавов проводится при температуре 540 градусов Цельсия, а для сталей с твердостью на уровне HRC 59-60 достаточно и 150 градусов. Что характерно, при отпуске быстрорежущих сплавов их твердость даже возрастает, а во втором случае ее уровень понижается, но значительно повышается показатель пластичности.

Закалка и отпуск изделий из стали, в том числе и нержавеющих сортов, вполне допустима (и, более того, часто практикуется) и в домашних условиях, если в этом возникла необходимость. В таких случаях для нагрева изделий из стали можно использовать электроплиты, духовки и даже раскаленный песок. Температуры, до которых следует нагревать стальные изделия в таких случаях, можно подобрать по специальным таблицам. Перед закалкой или отпуском стальных изделий, их необходимо тщательно очистить, на их поверхности не должно содержаться грязи, следов масла и ржавчины.

После очистки изделие из стали следует нагреть так, чтобы оно равномерно раскалилось докрасна. Для того чтобы раскалить его до такого состояния, необходимо выполнять нагрев в несколько подходов. После того, как требуемое состояние достигнуто, нагреваемое изделие следует охладить в масле, а затем сразу поместить в духовку, предварительно разогретую до 200 градусов Цельсия. Затем необходимо постепенно снизить температуру в духовке, доведя ее до отметки в 80 градусов Цельсия.

Данный процесс занимает обычно час. Дальнейшее охлаждение следует проводить на открытом воздухе, исключение составляют лишь изделия из хромоникелевых сталей, для снижения температуры которых используются масляные ванны. Обусловлено это тем, что стали таких марок при медленном охлаждении могут приобрести так называемую отпускную хрупкость.

Оценка статьи:

Загрузка...

Поделиться с друзьями:

met-all.org

температура, режимы, технология, твердость стали после закалки

Для придания стали определенных эксплуатационных качеств на протяжении многих десятилетий проводится термообработка. Сегодня, как и несколько столетий назад, закалка стали предусматривает нагрев металла и его последующее охлаждение в определенной среде. Температура нагрева стали под закалку должна быть выбрана в соответствии с составом металла и механическими свойствами, которые нужно получить. Допущенные ошибки при выборе режимов закалки приведут к повышению хрупкости структуры или мягкости поверхностного слоя. Именно поэтому рассмотрим способы закалки стали, особенности применяемых технологий, а также многие другие моменты.

Закалка стали

Закалка стали

Какой бывает закалка метала?

Для чего нужна закалка стали знали еще древние кузнецы. Правильно выбранная температура закалки стали позволяет изменять основные эксплуатационные характеристики материала, так как происходит преобразование структуры.

Закалка – термообработка стали, которая сегодня проводится для улучшения механических качеств металла. Процесс основан на перестроении атомной решетки за счет воздействия высокой температуры с последующим охлаждением.

Технология закалки стали позволяет придать недорогим сортам металла более высокие эксплуатационные качества. За счет этого снижается стоимость изготавливаемых изделий, повышается прибыльность налаженного производства.

Основные цели, которые преследуются при проведении закалки:

  1. Повышение твердости поверхностного слоя.
  2. Увеличение показателя прочности.
  3. Уменьшение пластичности до требуемого значения, что существенно повышает сопротивление на изгиб.
  4. Уменьшение веса изделий при сохранении прочности и твердости

Существуют самые различные методы закалки стали с последующим отпуском, которые существенно отличаются друг от друга. Наиболее важными режимами нагрева можно назвать:

  1. Температуру нагрева.
  2. Время, требующееся для нагрева.
  3. Время выдержки металла при заданной температуре.
  4. Скорость охлаждения.

Изменение свойств стали при закалке может проходить в зависимости от всех вышеприведенных показателей, но наиболее значимым называют температуру нагрева. От нее зависит то, как будет происходить перестроение атомной решетки. К примеру, время выдержки при закалке стали выбирается в соответствии с тем, какой прочностью и твердостью должно обладать зубчатое колесо для обеспечения длительной эксплуатации в условиях повышенного износа.

Цвета закалки стали

Цвета закалки стали

При рассмотрении того, какие стали подвергаются закалке стоит учитывать, что температура нагрева зависит от уровня содержания углерода и различных примесей. Единицы закалки стали представлены максимальной температурой, а также временем выдержки.

При рассмотрении данного процесса изменения основных эксплуатационных свойств следует учитывать нижеприведенные моменты:

  1. Закалка направлена на повышение твердости. Однако с увеличением твердости металл становится и более хрупким.
  2. На поверхности может образовываться слой окалины, так как потеря углерода и других примесей у поверхностных слоев больше, чем в середине. Толщина данного слоя учитывается при расчета припуска, максимальных размеров будущих деталей.

Выполняется закалка углеродистой стали с учетом того, с какой скоростью будет проходить охлаждение. При несоблюдении разработанных технологий может возникнуть ситуация, когда перестроенная атомная решетка перейдет в промежуточное состояние. Это существенно ухудшит основные качества материала. К примеру, охлаждение со слишком большой скоростью становится причиной образования трещин и различных дефектов, которые не позволяют использовать заготовку в дальнейшем.

Процесс закалки сталей предусматривает применение камерных печей, которые могут нагревать среду до температуры 800 градусов Цельсия и поддерживать ее на протяжении длительного периода. Это позволяет продлить время закалки стали и повысить качество получаемых заготовок. Некоторые стали под закалку пригодны только при условии нагрева среды до температуры 1300 градусов Цельсия, для чего проводится установка иных печей.

Отдельная технология разрабатывается для случая, когда заготовка имеет тонкие стены и грани. Представлена она поэтапным нагревом.

Полную закалку используют обычно для сталей и деталей, которые не подвержены растрескиванию или короблению.

Зачастую технология поэтапного нагрева предусматривает достижение температуры 500 градусов Цельсия на первом этапе, после чего выдерживается определенный промежуток времени для обеспечения равномерности нагрева и проводится повышение температуры до критического значения. Холодная закалка стали не приводит к перестроению всей атомной сетки, что определяет только несущественное увеличение эксплуатационных характеристик.

Как ранее было отмечено, есть различные виды закалки стали, но всегда нужно обеспечить равномерность нагрева. В ином случае перестроение атомной решетки будет проходить так, что могут появиться серьезные дефекты.

Методы предотвращения образования окалины и критического снижения концентрации углерода

Назначение закалки стали проводится с учетом того, какими качествами должна обладать деталь. Процесс перестроения атомной сетки связан с большими рисками появления различных дефектов, что учитывается на этапе разработки технологического процесса.

Даже наиболее распространенные методы, к примеру, закалка стали в воде, характерно появления окалины или существенного повышения хрупкости структуры при снижении концентрации углерода. В некоторых случаях закалка стали проводится уже после финишной обработки, что не позволяет устранить даже мелкие дефекты. Именно поэтому были разработаны технологии, которые снижают вероятность появления окалины или трещин. Примером можно назвать технологию, когда закалка стали проходит в среде защитного газа. Однако сложные способы закалки стали существенно повышают стоимость проведения процедуры, так как газовая среда достигается при установке печей с высокой степенью герметичности.

Более простая технология, при которой проводится закалка углеродистой стали, предусматривает применение чугунной стружки или отработанного карбюризатора. В данном случае сталь под закалку помещают в емкость, заполненную рассматриваемыми материалами, после чего только проводится нагрев. Температура закалки несущественно корректируется с учетом созданной оболочки из стружки. Технология предусматривает обмазывание емкости снаружи глиной для того, чтобы избежать попадание кислорода, из-за чего начинается процесс окислений.

Температура нагрева стали при термообработке

Температура нагрева стали при термообработке

Как ране было отмечено, термообработка предусматривает и охлаждение сталей, для чего может использоваться не только водяная, но, к примеру, и соляная ванная. При использовании кислот в качестве охлаждающей жидкости одним из требований является периодическое раскисление сталей. Данный процесс позволяет исключить вероятность снижения показателя концентрации углерода в поверхностном слое. Чтобы провести процесс раскисления используется борная кислота или древесный уголь. Также не стоит забывать о том, что процесс раскисления сталей приводит к появлению пламя на заготовки во время ее опускания в ванную. Поэтому при закалке, закалкой сталей с применением соляных ванн следует соблюдать разработанную технику безопасности.

Рассматривая данные методы термической обработки с последующим охлаждением следует отметить, что они существенно повышают себестоимость заготовки. Однако сегодня охлаждение в воде или закалка при заполнении камеры кислородом не позволяют повысить показатели свойств стали без появления дефектов.

Закалка стали - технологический процесс

Закалка стали — технологический процесс

Процедура охлаждения

Рассматривая все виды закалки стали стоит учитывать, что не только температура нагрева оказывает сильное воздействие на структуру, но и время выдержки, а также процедура охлаждения. На протяжении многих лет для охлаждения сталей использовали обычную воду, в составе которой нет большого количества примесей. Стоит учитывать, что примеси в воде не позволяют провести полную закалку с соблюдением скорости охлаждения. Оптимальной температурой воды, используемой для охлаждения закалённой детали, считают показатель 30 градусов Цельсия. Однако стоит учитывать, что жидкость подвергается нагреву при опускании раскаленных заготовок. Холодная проточная вода не может использоваться при охлаждении.

Обычно используют воду при охлаждении для получения не ответственных деталей. Это связано с тем, что изменение атомной сетки в данном случае обычно приводят к короблению и появлению трещин. Закаливание с последующим охлаждением в воде проводят в нижеприведенных случаях:

  1. При цементировании металла.
  2. При поверхностной закалке.
  3. При простой форме заготовки.

Детали после финишной обработки подобным образом не охлаждаются.

Для придания нужной твердости заготовкам сложной формы используют охлаждающую жидкость, состоящую из каустической соды, нагреваемой до температуры 60 градусов Цельсия. Стоит учитывать, что закаленное железо при использовании данной охлаждающей жидкости приобретает более светлый оттенок. Специалисты уделяют внимание важности соблюдения техники безопасности, так как могут выделяться токсичные вещества при нагреве рассматриваемых веществ.

Процесс закалки стали

Процесс закалки стали

Тонкостенные детали также подвергаются термической обработке. Закалочное воздействие с последующим неправильным охлаждением приведет к тому, что концентрация углерода снизиться до критических значений. Выходом из сложившейся ситуации становится использование минеральных масел в качестве охлаждающей среды. Используют их по причине того, что масло способствует равномерному охлаждению. Однако попадание воды в состав масла становится причиной появления трещин. Поэтому заготовки должны подвергаться охлаждению при использовании масла с соблюдением мер безопасности.

Рассматривая назначение минеральных масел в качестве охлаждающей жидкости следует учитывать и некоторые недостатки этого метода:

  1. Соблюдая режимы нагрева можно создать ситуацию, когда раскаленная заготовка контактирует с маслом, что приводит к выделению вредных веществ.
  2. В определенном интервале воздействия высокой температуры масло может загореться.
  3. Подобный метод охлаждения позволяет выдержать требуемую твердость, измеряемую в определенных единицах, а также избежать появления трещин в структуре, но на поверхности остается налет, удаление которого также создает весьма большое количество проблем.
  4. Само масло со временем теряет свои свойства, а его стоимость довольно велика.

Какие именно жидкости используют для охлаждения стали?

Вышеприведенная информация определяет то, что жидкость и режим охлаждения выбираются в зависимости от формы, размеров заготовки, а также того, насколько качественной должна быть поверхность после закалки.  Комбинированным методом охлаждения называется процесс применения нескольких охлаждающих жидкостей. Примером можно назвать закалку детали сложной формы, когда сначала охлаждение проходит в воде, а потом масляной ванне. В этом случае учитывается то, до какой температуры на каком этапе охлаждается металл.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

 

stankiexpert.ru

Закалка стали -- старинная технология для современных материалов

Издавна человек использовал процедуру закаливания металлоизделий, которые были необходимы ему в повседневной жизни. Будь то холодное оружие либо орудия для сельскохозяйственных работ – все требовало повышенной прочности. Поэтому у людей возникла необходимость в изобретении такого процесса, в результате которого металл становился бы прочнее и тверже, причем пластичность его при этом снижалась. И способ обработки металлических изделий был найден. Закалка стали – таково его название.  Для приобретения необходимых качеств металл в процессе закаливания претерпевает нагрев и последующее охлаждение.

Когда появилась нержавеющая сталь, возникла необходимость усовершенствования тех методов и способов, при помощи которых обрабатывался металл. Термическая обработка и вовсе стала развиваться по-новому, благодаря чему сегодня закалка стали (нержавеющей) дает возможность получения новых материалов более высокого качества.

Мартенситная нержавеющая сталь является тем видом стали, к которому в основном применяется процесс закалки. Ее обычное состояние – повышенная твердость, однако она отличается тем, что склонна к проявлению хрупкости. Применение термической обработки с быстрым отпуском способствует увеличению коэффициента вязкости, что характеризует этот вид стали как один из наиболее востребованных металлов.

В работе с нержавеющим прокатом различаются следующие виды закалки – это глобальный вид, когда изделие нагревается полностью, и локальный, где применяется частичное закаливание тех участков, которые необходимы. Помимо этого, в таком процессе, как закалка стали, используются различные методики охлаждения. Это напрямую зависит от того, какая марка у нержавейки. В основном для этих целей применяются масла щелочи и соли. Вода в качестве охлаждающей среды используется редко.

В зависимости от того, какая у изделия форма, а также марка металла, к нему применяются и различные способы закалки стали. Различают ступенчатую закалку изотермическую и закалку с самоотпуском.

Основными параметрами процесса являются нагрев (температура) и охлаждение (скорость). Причем та скорость, с которой будет охлаждаться сталь, будучи нагретой до нужной температуры, повлияет на результаты самой закалки. Главной технической проблемой процесса является выбор оптимальной температуры ввиду того, что при перегреве нержавейка может утратить углеводород, что приведет к снижению ее прочности. Для того чтобы избежать остаточного напряжения во внутренней структуре закаленных металлоизделий, следует применить дополнительные механические способы обработки. Например, поэтапное охлаждение, где понижение температуры будет постепенным. Этот способ закалки хорош для изготовления тех заготовок, которые предназначены для того, чтобы производить сверхпрочный инструмент.

Существует еще и поверхностная закалка стали. Она не занимает много времени в отличие от химико-термической обработки, что позволяет автоматизировать технологический процесс. При таком способе выполнения процесса закаливания потребуется изготовление своего индуктора и подбора своего режима обработки для каждой отдельно взятой детали. Поверхностная закалка подойдет для производства деталей одного типа (серийное производство), например, в автомобилестроении.

Таким образом, для получения высококачественного металлопроката, который бы обладал сочетанием прочности, вязкости и пластичности в требующихся пропорциях, необходимо применить к металлоизделиям уникальный процесс под названием «закалка стали». И хотя сталь нержавеющая и является одним из лучших материалов современности, тем не менее, технология, позволяющая улучшить его качество, пришла к нам из далекой древности.

fb.ru

температура, виды и способы :: SYL.ru

Термообработка металла – это обязательный процесс в металлургии. Благодаря правильно проведенной термической обработке стали можно добиться улучшения тех или иных механических характеристик изделия. На эту тему можно говорить довольно долго. Давайте разберемся с вами, что же представляет собой закалка стали, для чего она нужна и какова технология. На первый взгляд все это может показаться крайне сложным, однако если разобраться более подробно, это не так.

Немного общих сведений

Закалка представляет собой процесс изменения кристаллической решетки стали и ее сплавов путем достижения критической температуры, которая для каждого материала своя. Как правило, при достижении необходимого температурного порога следует резкое охлаждение. В качестве охлаждающей жидкости может выступать вода или масло, но об этом более подробно мы поговорим немного позже.

Стоит заметить, что для инструментальных сталей чаще применяется неполная закалка. Суть ее заключается в том, что достигается температура, при которой образуются избыточные фазы. Для других марок стали используется полная закалка. В этом случае температура нагрева увеличивается на 50 градусов. Цветные металлы подвергаются термообработке без полиморфного превращения, а сталь – с полиморфным превращением.

Снятие закалки

Отпуск – технологический процесс охлаждения изделия, суть которого заключается в получении более пластичного и менее хрупкого материала. При этом прочность стараются сохранить на прежнем уровне. Для этого изделие помещают в печь с температурой от 150 до 650 градусов, где она постепенно остывает. Существует три вида отпуска:

  • Низкотемпературный – придает обрабатываемому изделию высокую износостойкость, однако такая сталь хуже воспринимает динамические нагрузки. Процесс протекает под температурой 260 градусов. Низкотемпературному отпуску подвергаются изделия из низколегированных и углеродистых сталей (режущие и измерительные инструменты).
  • Среднетемпературный – протекает при температуре от 350 до 500 градусов. Чаще всего используется отпуск пружин, рессор, штампов и т. п. Такое изделие будет обладать хорошей упругостью и выносливостью.
  • Высокотемпературный отпуск протекает при температуре 500-680 градусов. После окончания процесса изделие будет обладать высокой прочностью и пластичностью. Высокотемпературный отпуск подходит для дальнейшего изготовления деталей, воспринимающих большие нагрузки (зубчатое колесо, вал и т.п.).

Закалка стали в домашних условиях

Если у вас появилась необходимость повысить прочность домашнего инструмента, то вовсе не обязательно бежать к кузнецу, ведь можно обойтись собственными силами. Для этого вам понадобится минимум оборудования и знаний. В качестве примера давайте возьмем топор. Если изделие было изготовлено еще в СССР, то можете быть уверены в том, что оно сделано на совесть. Однако современные топоры качеством не блещут. Заминание или выкрашивание свидетельствует о том, что технология закалки не была соблюдена. Но ничто нам не мешает все сделать самостоятельно.

Для этого разжигаем костер с углями. Последние должны быть как можно белей. Это говорит об их высокой температуре. Предварительно подготовьте две емкости. Одну наполните маслом, можно обычной отработкой машинного, вторую чистой холодной водой. Когда кромка станет малинового цвета, топор нужно доставать. Для удержания можно использовать кузнечные клещи или что-то в этом роде. Быстро окунаете топор в масло и держите три секунды, затем на столько же достаете и опять окунаете. Так нужно делать до потери яркого цвета. После окунаете топор в воду, не забывайте ее помешивать. На этом закалка стали в домашних условиях закончена. А сейчас пойдем дальше.

Подробно о нагреве металла

Весь процесс закалки условно можно разделить на три этапа:

  • нагрев стали;
  • выдержка – необходима для завершения всех структурных превращений и сквозного прогрева;
  • охлаждение (скорость регулируется).

Если говорить об изделиях, изготовленных из углеродистых сталей, то их закалка осуществляется в камерных печах. При этом не требуется предварительный подогрев, что обусловлено устойчивостью материала к короблению и растрескиванию. Сложные изделия, к примеру резкие переходы и тонкие грани, требуют предварительного подогрева. Это делают:

  • в соляных печах с 3-хкратным погружением на 3-4 секунды;
  • в отдельных печах при температуре 400-500 градусов по Цельсию.

Нужно понимать, что технология подразумевает равномерный нагрев. Если за один подход это обеспечить нельзя, то необходима выдержка для сквозного прогрева. Чем больше изделий находится в печи, тем дольше необходимо их греть. К примеру, одна дисковая фреза диаметром 2,4 см требует выдержки 13 минут, а десяток таких же изделий, необходимо нагревать уже 18 минут.

Способы закалки стали

В настоящее время активно используется:

  • Закалка в одном охладителе. Суть ее заключается в том, что изделие помещается в закалочную жидкость, где оно и находится до полного своего охлаждения. Такую закалку можно реализовать в домашних условиях.
  • Закалка в двух средах – метод подходит для обработки углеродистых сталей. Суть метода заключается в том, что деталь сначала погружается в воду (быстро охлаждающая среда), а затем в масло.
  • Струйчатая – суть метода в том, что обрабатываемая деталь обрызгивается струей воды. Такой способ закалки используют тогда, когда необходимо закалить только часть детали. Кроме того, не образуется паровая рубашка, что увеличивает эффективность.
  • Ступенчатая – охлаждение стали осуществляется в закалочной среде при температуре выше мартенситной. После этого идет выдержка. На этом этапе деталь должна иметь одинаковую температуру во всех сечениях, которая должна соответствовать температуре закалочной ванны.

Защита изделия от внешних воздействий

Довольно часто возникает необходимость защиты деталей от таких вредных воздействий, как окалина и потеря углерода. Для этого чаще всего используют специальные газы, которые подают в печь, где находится обрабатываемая деталь. Конечно, это возможно только при полной герметизации печи. В большинстве случаев источником газа является специальный генератор, который работает на углеводородных газах (метан, аммиак и др.).

В любом случае полная закалка стали должна проходить под защитой. Если газ подвести не получается, то имеет смысл использовать герметичную тару. В качестве герметика используется глина, которая не дает проходить воздуху внутрь. Перед этим желательно осыпать деталь чугунной стружкой.

Соляные ванны

Полная или поверхностная закалка стали должна проходить в соляных ваннах. Они защищают обрабатываемое изделие от окисления, однако не от обезуглероживания. По этой простой причине они подвергаются раскислению бурой или кровяной солью несколько раз за 8-12 часов. Соляные ванны, функционирующие при температуре 760-1000 градусов, эффективно раскисляются древесным углем. Для этого необходимо стакан, имеющий много отверстий, заполнить просушенным древесным углем. Затем стакан закрывают крышкой во избежание всплытия угля и опускают на дно соляной ванной. С течением времени количество языков пламени постепенно уменьшается. По сути, чем больше таких раскислений приходится на одно изделие, тем лучше будет защита от обезуглероживания.

Необходимо периодически проверять степень раскисления. Для этого берут обычное стальное лезвие и кладут его на 5-7 минут в ванну. Если оно будет ломаться, а не гнуться, то ванна считается достаточно раскисленной. Стоит заметить, что некоторые виды закалки стали не нуждаются в выполнении подобных мероприятий.

Охлаждающие жидкости

Несложно догадаться, что в качестве основной жидкости для охлаждения стальных изделий используют воду. При этом, добавляя соль или мыло, можно изменять скорость охлаждения детали. Были зарегистрированы случаи, когда закалочный бак использовался не по назначению, скажем для мытья рук. Количество попавшего мыла было достаточно для того, чтобы процесс охлаждения прошел не так, и изделие не получило требуемых свойств.

Чтобы деталь охлаждалась равномерно по всей поверхности, температура в баке не должна быть меньше 20 и выше 30 градусов. Кроме того, нельзя использовать проточную воду. Есть существенные недостатки такого охлаждения, которые заключаются в растрескивании и короблении изделия. Поэтому водяное охлаждение чаще всего используют для несложных неответственных деталей и инструментов, или имеющих цементированное покрытие. Под водяным охлаждением проходит закалка углеродистой стали.

Охлаждение конструкционной и легированной стали

Конструкционная сталь более качественная, а большая часть изделий имеет сложную конфигурацию. Для охлаждения используют 50% раствор каустической соды, которую предварительно разогревают до температуры 50-60 градусов. После закалки в таком растворе детали будут иметь светлый цвет, что говорит о том, что технология была соблюдена. Важно не перегреть раствор каустической соды выше 60 градусов.

Легированная сталь закаляется в минеральном масле. Это же касается и очень тонких изделий из углеродистой стали, например кромок режущих инструментов. Ключевой особенностью данного метода является то, что скорость охлаждения не зависит от температуры масла. Так, процесс будет протекать одинаково как при 20, так и при 120 градусах.

О температуре отпуска

Структура стали после закалки может несколько отличаться, в зависимости от выбранной температуры отпуска. Но нужно понимать, что температура должна выбираться в зависимости от марки стали. К примеру, если нужно получить изделие твердостью 60 HRC, то отпуск проводят при температуре не выше 200 градусов. В этом случае замечается небольшое снижение твердости и уменьшение внутренних напряжений. А вот быстрорежущая сталь должна отпускаться при температуре не ниже 540 градусов. При этом можно говорить о существенном увеличении твердости изделия.

Заключение

Температура закалки стали никогда не должна превышать 1 300 градусов, что считается критическим порогом. Цвет изделия при достижении этой точки будет белый, а нормальный – обычно красный или малиновый. Минимальная температура закалки стальных деталей 550 градусов. При этом изделие будет ярко-красного цвета.

Кстати, стоит заметить, что закалка нержавеющей стали проходит под температурой в 1050-1080 градусов в воде. Механические свойства изделия по окончании процесса характеризуются тем, что несколько понижается прочность и твердость, но значительно увеличивается пластичность и вязкость. На этом можно заканчивать разговор на данную тему. Как вы видите, для получения необходимых механических свойств, важно соблюдать технологию, ведь малейшие отклонения приводят к нежелательным результатам. В случае если все будет сделано правильно, пусть даже в домашних условиях, вы заметите существенные изменения в положительную сторону.

www.syl.ru

Руководство как повысить твердость стали и цветных металлов

закалка металла, стали и их сплавов

Технологии придания большей твердости металлам и сплавам совершенствовались в течение долгих веков. Современное оборудование позволяет проводить термическую обработку таким образом, чтобы значительно улучшать свойства изделий даже из недорогих материалов.

Закалка стали и сплавов

Закалка (мартенситное превращение) — основной способ придания большей твердости сталям. В этом процессе изделие нагревают до такой температуры, что железо меняет кристаллическую решетку и может дополнительно насытиться углеродом. После выдержки в течение определенного времени, сталь охлаждают. Это нужно сделать с большой скоростью, чтобы не допустить образования промежуточных форм железа.В результате быстрого превращения получается перенасыщенный углеродом твердый раствор с искаженной кристаллической структурой. Оба эти фактора отвечают за его высокую твердость (до HRC 65) и хрупкость.Большинство углеродистых и инструментальных сталей при закаливании нагревают до температуры от 800 до 900С, а вот быстрорежущие стали Р9 и Р18 калятся при 1200-1300С.

Микроструктура быстрорежущей стали Р6М5: а) литое состояние; б) после ковки и отжига; в) после закалки; г) после отпуска. ×500.

Микроструктура быстрорежущей стали Р6М5: а) литое состояние; б) после ковки и отжига;в) после закалки; г) после отпуска. ×500.

Режимы закалки

  • Закалка в одной среде

Нагретое изделие опускают в охлаждающую среду, где оно остается до полного остывания Это самый простой по исполнению метод закалки, но его можно применять только для сталей с небольшим (до 0,8%) содержанием углерода либо для деталей простой формы. Эти ограничения связаны с термическими напряжениями, которые возникают при быстром охлаждении — детали сложной формы могут покоробиться или даже получить трещины.

  • Ступенчатая закалка

При таком способе закалки изделие охлаждают до 250-300С в соляном растворе с выдержкой 2-3 минуты для снятия термических напряжений, а затем завершают охлаждение на воздухе. Это позволяет не допускать появления трещин или коробления деталей. Минус этого метода в сравнительно небольшой скорости охлаждения, поэтому его применяют для мелких (до 10 мм в поперечнике) деталей из углеродистых или более крупных — из легированных сталей, для которых скорость закалки не столь критична.

  • Закалка в двух средах

Начинается быстрым охлаждением в воде и завершается медленным — в масле. Обычно такую закалку используют для изделий из инструментальных сталей. Основная сложность заключается в расчете времени охлаждения в первой среде.

  • Поверхностная закалка (лазерная, токами высокой частоты)

Применяется для деталей, которые должны быть твердыми на поверхности, но иметь при этом вязкую сердцевину, например, зубья шестеренок. При поверхностной закалке внешний слой металла разогревается до закритических значений, а затем охлаждается либо в процессе теплоотвода (при лазерной закалке), либо жидкостью, циркулирующей в специальном контуре индуктора (при закалке током высокой частоты)

Отпуск

Закаленная сталь становится чрезмерно хрупкой, что является главным недостатком этого метода упрочнения. Для нормализации конструкционных свойств производят отпуск — нагрев до температуры ниже фазового превращения, выдержку и медленное охлаждение. При отпуске происходит частичная «отмена» закалки, сталь становится чуть менее твердой, но более пластичной. Различают низкий (150-200С, для инструмента и деталей с повышенной износостойкостью), средний (300-400С, для рессор) и высокий (550-650, для высоконагруженных деталей) отпуск.

Таблица температур закалки и отпуска сталей

№ п/п Марка стали Твёрдость (HRCэ) Температ. закалки, град.С Температ. отпуска, град.С Температ. зак. ТВЧ, град.С Температ. цемент., град.С Температ. отжига, град.С Закал. среда Прим.
1 2 3 4 5 6 7 8 9 10
1 Сталь 20 57…63 790…820 160…200 920…950 Вода
2 Сталь 35 30…34 830…840 490…510 Вода
33…35 450…500
42…48 180…200 860…880
3 Сталь 45 20…25 820…840 550…600 Вода
20…28 550…580
24…28 500…550
30…34 490…520
42…51 180…220 Сеч. до 40 мм
49…57 200…220 840…880
<= 22 780…820 С печью
4 Сталь 65Г 28…33 790…810 550…580 Масло Сеч. до 60 мм
43…49 340…380 Сеч. до 10 мм (пружины)
55…61 160…220 Сеч. до 30 мм
5 Сталь 20Х 57…63 800…820 160…200 900…950 Масло
59…63 180…220 850…870 900…950 Водный раствор 0,2…0,7% поли-акриланида
«— 840…860
6 Сталь 40Х 24…28 840…860 500…550 Масло
30…34 490…520
47…51 180…200 Сеч. до 30 мм
47…57 860…900 Водный раствор 0,2…0,7% поли-акриланида
48…54 Азотирование
<= 22 840…860
7 Сталь 50Х 25…32 830…850 550…620 Масло Сеч. до 100 мм
49…55 180…200 Сеч. до 45 мм
53…59 180…200 880…900 Водный раствор 0,2…0,7% поли-акриланида
< 20 860…880
8 Сталь 12ХН3А 57…63 780…800 180…200 900…920 Масло
50…63 180…200 850…870 Водный раствор 0,2…0,7% поли-акриланида
<= 22 840…870 С печью до 550…650
9 Сталь 38Х2МЮА 23…29 930…950 650…670 Масло Сеч. до 100 мм
<= 22 650…670 Нормализация 930…970
HV > 670 Азотирование
10 Сталь 7ХГ2ВМ <= 25 770…790 С печью до 550
28…30 860…875 560…580 Воздух Сеч. до 200 мм
58…61 210…230 Сеч. до 120 мм
11 Сталь 60С2А <= 22 840…860 С печью
44…51 850…870 420…480 Масло Сеч. до 20 мм
12 Сталь 35ХГС <= 22 880…900 С печью до 500…650
50…53 870…890 180…200 Масло
13 Сталь 50ХФА 25…33 850…880 580…600 Масло
51…56 850…870 180…200 Сеч. до 30 мм
53…59 180…220 880…940 Водный раствор 0,2…0,7% поли-акриланида
14 Сталь ШХ15 <= 18 790…810 С печью до 600
59…63 840…850 160…180 Масло Сеч. до 20 мм
51…57 300…400
42…51 400…500
15 Сталь У7, У7А НВ <= 187 740…760 С печью до 600
44…51 800…830 300…400 Вода  до 250, масло Сеч. до 18 мм
55…61 200…300
61…64 160…200
61…64 160…200 Масло Сеч. до 5 мм
16 Сталь  У8, У8А НВ <= 187 740…760 С печью до 600
37…46 790…820 400…500 Вода      до 250, масло Сеч. до 60 мм
61…65 160…200
61…65 160…200 Масло Сеч. до 8 мм
61…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
17 Сталь У10, У10А НВ <= 197 750…770
40…48 770…800 400…500 Вода  до 250, масло Сеч. до 60 мм
50…63 160…200
61…65 160…200 Масло Сеч. до 8 мм
59…65 160…180 880…900 Водный раствор 0,2…0,7% поли-акриланида
18 Сталь  9ХС <= 24 790…810 С печью до 600
45…55 860…880 450…500 Масло Сеч. до 30 мм
40…48 500…600
59…63 180…240 Сеч. до 40 мм
19 Сталь  ХВГ <= 25 780…800 С печью до 650
59…63 820…850 180…220 Масло Сеч. до 60 мм
36…47 500…600
55…57 280…340 Сеч. до 70 мм
20 Сталь Х12М 61…63 1000…1030 190…210 Масло Сеч. до 140 мм
57…58 320…350
21 Сталь Р6М5 18…23 800…830 С печью до 600
64…66 1210…1230 560…570 3-х кратн. Масло, воздух В масле до 300…450 град., воздух до 20
26…29 780…800 Выдержка 2…3 часа, воздух
22 Сталь  Р18 18…26 860…880 С печью до 600
62…65 1260…1280 560…570 3-х кратн. Масло, воздух В масле до 150…200 град., воздух до 20
23 Пружин. сталь  Кл. II 250…320 После холодной навивки пружин 30-ть минут
24 Сталь 5ХНМ, 5ХНВ >= 57 840…860 460…520 Масло Сеч. до 100 мм
42…46 Сеч. 100..200 мм
39…43 Сеч. 200..300 мм
37…42 Сеч. 300..500 мм
НV >= 450 Азотирование. Сеч. св. 70 мм
25 Сталь 30ХГСА 19…27 890…910 660…680 Масло
27…34 580…600
34…39 500…540
«— 770…790 С печью до 650
26 Сталь 12Х18Н9Т <= 18 1100…1150 Вода
27 Сталь 40ХН2МА, 40ХН2ВА 30…36 840…860 600…650 Масло
34…39 550…600
28 Сталь ЭИ961Ш 27…33 1000…1010 660…690 Масло 13Х11Н2В2НФ
34…39 560…590 При t>6 мм вода
29 Сталь 20Х13 27…35 1050 550…600 Воздух
43,5…50,5 200
30 Сталь 40Х13 49,5…56 1000…1050 200…300 Масло

Термообработка цветных металлов

Сплавы на основе других металлов не отвечают на закалку столь же ярко, как стали, но их твердость тоже можно повысить термообработкой. Обычно используют сочетание закалки и предварительного отжига (нагрева выше точки фазового превращения с медленным охлаждением).

  • Бронзы (сплавы меди) подвергают отжигу при температуре чуть ниже температуры плавления, а потом закалке с охлаждением водой. Температура закалки от 750 до 950С в зависимости от состава сплава. Отпуск при 200-400С производят в течение 2-4 часов. Наибольшие показатели твердости, до HV300 (около HRC 34) можно при этом получить для изделий из бериллиевых бронз.
  • Твердость серебра можно повысить отжигом до температуры, близкой к температуре плавления (тусклый красный цвет) с последующей закалкой.
  • Различные сплавы никеля подвергают отжигу при 700-1185С, такой широкий диапазон определяется разнообразием их составов. Для охлаждения используют соляные растворы, частички которых потом удаляют водой либо защитные газы, препятствующие окислению (сухой азот, сухой водород).
Металл Температураотжига, C° Охлаждающая среда
    МедьЛатунь Л96Латунь Л90-Л62МельхиорНейзильберСереброАлюминийДюралюминий 500 — 600540 — 600600 — 700650 — 700700 — 750650 — 700300 — 350360 — 380 ВодаНа открытом воздухеНа открытом воздухеВодаВодаВодаНа открытом воздухеОхлаждение в печи

Оборудование и материалы

Для нагрева металла при термообработке используются 4 основных типа печей:— соляная электродная ванна— камерная печь— печь непрерывного горения— вакуумная печь

В качестве закалочных сред, в которых происходит охлаждение, используются жидкости (вода, минеральное масло, специальные водополимеры (Термат), растворы солей), воздух и газы (азот, аргон) и даже легкоплавкие металлы. Сам агрегат, где происходит охлаждение, называется закалочная ванна и представляет собой емкость, в которой происходит ламинарное перемешивание жидкости. Важной характеристикой закалочной ванны является качество удаления паровой рубашки.

Старение и другие методы повышения твердости

Старение — еще один вид термообработки, позволяющий повысить твердость сплавов алюминия, магния, титана, никеля и некоторых нержавеющих сталей, которые подвергают предварительной закалке без полиморфного превращения. В процессе старения увеличиваются твердость и прочность, а пластичность понижается.

  • Сплавы алюминия, например, дуралюмины (4-5% меди) и сплавы с добавлением никеля и железа выдерживают в пределах часа при температуре 100-180С
  • Сплавы никеля подвергают старению в 2-3 этапа, что в сумме занимает от 6 до 30 часов при температурах от 595 до 845С. Некоторые сплавы подвергают предварительной закалке при 790-1220С. Детали из никелевых сплавов помещают в дополнительный контейнеры, чтобы предохранить от контакта с воздухом. Для нагрева используют электрические печи, для мелких деталей могут применяться соляные электродные ванны.
  • Мартенситно-стареющие стали (высоколегированные безуглеродистые сплавы железа) стареют около 3 часов при 480-500С после предварительного отжига при 820С

Химико-термическая обработка — насыщение поверхностного слоя легирующими элементами,

  • неметаллическими: углеродом (цементация) и азотом (азотирование) применяются для повышения износостойкости колен, валов, шестерней из низкоуглеродистых сталей
  • металлическими: например, кремнием (силицирование) и хромом помогает повысить износо- и коррозионную стойкость деталей

Цементирование и азотирование производят в шахтных электропечах. Существуют также универсальные агрегаты, позволяющие проводить весь спектр работ по термохимической обработке стальных изделий.

Обработка давлением (наклеп) — увеличение твердости в результате пластической деформации при относительно низких температурах. Таким образом происходит упрочнение низкоуглеродистых сталей при холодной объемной штамповке, а также чистых меди и алюминия.

В процессе термической обработки изделия из стали могут претерпевать поразительные превращения, приобретая износостойкость и твердость, в разы большую чем у исходного материала. Диапазон изменения твердости сплавов из цветных металлов при термической обработке гораздо меньше, но их уникальные свойства зачастую и не требуют масштабного улучшения.

www.m-deer.ru

28. Закалка. Виды закалок.

Закалка– нагрев стали выше температуры фазовых превращений с последующим охлаждением по определённому режиму для получения нужной структуры и повышения твердости и прочности.

Процесс закалки стали заключается в ее нагреве до определенной температуры (на 30…50° выше линии GSKпо диаграммеFе -Fе3С), выдержке и последующем быстром охлаждении в воде, масле, расплавленных солях или других средах.

Доэвтектоидные стали надо на­гревать примерно на 30...50° выше критической точки Ас3 (линияGS):tзак= Ас3+ 30…50°С

Заэвтектоидные стали следует нагревать под закалку выше Ас1(линияSK) на 30...50°.

Масла имеют скорость охлаждения в интервале мартенситного превращения в 10 раз меньшую, чем вода, что уменьшает возможность возникновения дефектов при закалке.

Существуют следующие виды закалок:

Закалка в одном охладителе— самая распространен­ная - нагретое до температуры закалки изделие погружают в охлаж­дающую среду до полного охлаждения. (угле­родистые стали в воде, а легированные стали - в масле). Этот способ прост, но может вызвать значительные внутренние на­пряжения.

Прерывистая закалка (закалка в двух средах)при­меняется для предупреждения появления внутренних напряжений в изделии. Этот способ используют при закалке крупных изделий из конструк­ционной углеродистой и низколегированной стали. Нагретое до нужной температуры изделие сначала резко охлаждают в воде до 300...200 °С, затем переносят в масло или на воздух, где оно медленно охлаждается. Недостаток - трудность регулирования времени вы­держки.

Ступенчатая закалка- на­гретое изделие охлаждают, погружая в соляную ванну, температура которой превышает температуру начала мартенситного превращения данной стали. Затем изде­лие выдерживают в ванне для выравнивания темпера­туры по всему его объему и охлаждают на воздухе до нормальной температуры, что снижает внутренние на­пряжения. Её приме­няют для тонких стальных изделий из углеродистой стали.

Закалка с самоотпуском (закалка по цветам побежалости)заключается в том, что изделие охлаждают от температуры закалки в охлаждающей среде только в течение времени, которое необходимо для его прока­ливания на определенную глубину. Дальнейшее охлаж­дение идет на воздухе. При этом осуществляется отпуск за счет теплоотдачи из внутренних слоев изделия. Дан­ный способ применяют для закалки ударного инстру­мента (зубила, кузнечный инструмент и др.).

Поверхностная закалкаприменяется для увеличения износостойкости, твёрдости и прочности деталей, воспринимающих ударную нагрузку (зубчатые колеса, валы и др.). Она включает нагрев по­верхностного слоя изделия до температуры закалки и охлаждение для получения мартенситной структуры в поверхностном слое при сохранении вязкой сердцевины.

Различают следующие виды нагрева при поверхност­ной закалке: нагрев пламенем газовой горелки и нагрев токами высокой частоты.

29. Отпуск. Виды отпуска.

Отпуск— это нагрев закаленной стали до температуры ниже критической Ас1, выдержка при этой температуре и последующее охлаждение (обычно на воздухе).

Различают следующие виды отпуска: низкий, средний, высокий.

Низкий отпуск- нагрев закаленной стали до 250°С для снижения внутренних напряжений при сохранении высокой твердости. Его применяют для инструментов и изделий, которые должны обладать высокой твердостью и износостойкостью. Получаемая структура – мартенсит отпуска.

Средний отпуск - нагрев закаленной стали до 350...450°С, который приводит к пони­жению твердости и повышению вязкости стали по срав­нению с низким отпуском. Получаемая микроструктура троостит. Его применяют для пру­жин, штампов, рессор, ударного инструмента и др.

Высокий отпуск— нагрев закаленной стали до 450...650°С, который способствует по­лучению наибольшей вязкости при сохранении доста­точно высокой прочности. Твердость закаленной стали сильно снижается и обра­зуется структура сорбит. Закалку деталей машин на мартенсит с последую­щим высоким отпуском на сорбит назы­вают улучшением. Сорбит отпуска с зернистой формой цементита имеет более высокие показатели прочности и вязкости, чем сорбит закалки с пластинчатой формой цементита.

Обработка холодом- заключается в обработке закаленных изделий холодом при температурах порядка - 80°С и ниже. Об­работка холодом основана на том, что остаточный аустенит, находящийся в структуре закаленной стали при низких температурах, распадается в результате возникновения внутренних на­пряжений. Данный метод повышает твердость режущего инструмента, стабилизирует размеры измерительных ин­струментов и др. В промышленности применяют спе­циальные установки, в которых охладителями служат жидкий кислород (-183 °С), жидкий азот (-195 °С), смесь из твердой углекислоты (сухой лед) с денатурированным спиртом (-78,5 °С).

studfiles.net

Закалка и отпуск стали.

Целью закалки и отпуска стали является повышение твердости и прочности. Закалка и отпуск стали необходимы для очень многих деталей и изделий. Закалка основана на перекристаллизации при нагреве и предотвращении перехода аустенита в перлит путем быстрого охлаждения. Закаленная сталь имеет неравновесную структуру мартенсита, троостита или сорбита.

Чаще всего сталь резко охлаждают на мартенсит. Для смягчения действия закалки сталь отпускают, нагревая до температуры ниже точки А1. При отпуске структура стали из мартенсита закалки переходит мартенсит отпуска, троостит отпуска, сорбит отпуска.

Закалка стали. Температура нагрева стали при закалке та же, что и при полном отжиге: для доэвтектоидной стали на 30—50 °С выше точки Ас3, для заэвтектоидной — на 30—50° выше точки Aс1. При нагреве доэвтектоидной стали до температуры между точками Ас1 и Ac3 (неполная закалка) в структуре быстро охлажденной стали наряду с закаленными участками будет присутствовать нерастворенный при нагреве (в аустените) феррит, резко снижающий твердость и прочность. Поэтому для доэвтектоидной стали обязательна полная закалка с нагревом выше точки Ас3.

В заэвтектоидной стали избыточной фазой является цементит, который по твердости не уступает мартенситу и даже превосходит его, поэтому сталь достаточно нагреть на 30—50 °С выше точки Ас1.

Нагревать заготовки, особенно крупные, нужно постепенно во избежание местных напряжений и трещин, а время выдержки нагретых заготовок должно быть достаточным, чтобы переход в структуру аустенита полностью завершился.

Скорость охлаждения заготовок при закалке должна быть такой, чтобы получить заданную структуру. Критическая скорость закалки изменяется в широких пределах в зависимости от наличия легирующих компонентов в стали. Для простых сплавов железо—углерод эта скорость очень высока. Присутствие в стали кремния и марганца облегчает закалку на мартенсит, так как для такой стали С-образные кривые на диаграмме изотермического превращения аустенита будут сдвинуты вправо и критическая скорость закалки понижается.

Наиболее распространено охлаждение заготовок погружением их в воду, в щелочные растворы воды, в масло, расплавленные соли и т. д. При этом сталь закаливается на мартенсит или на бейнит.

При закалке применяют различные способы охлаждения в зависимости от марки стали, формы и размеров заготовки.

Простую закалку в одном охладителе (чаще всего в воде или водных растворах) выполняют, погружая в него заготовки до полного охлаждения. На рис. 2 режим охлаждения при такой закалке характеризует кривая 1.

Для получения наибольшей глубины закаленного слоя применяют охлаждение при интенсивном обрызгивании.

Прерывистой закалкой называют такую, при которой заготовку охлаждают последовательно в двух средах: первая среда — охлаждающая жидкость (обычно вода), вторая — воздух или масло (см. кривую 2 на рис. 2). Резкость такой закалки меньше, чем предыдущей. Рис. 2.

При ступенчатой закалке заготовку быстро погружают в соляной расплав и охлаждают до температуры несколько выше Мн. Выдержка обеспечивает выравнивание температуры от поверхности к сердцевине заготовки, что уменьшает напряжения, возникающие при мартенситном превращении; затем заготовку охлаждают на воздухе (кривая 3 на рис. 2).

Изотермическая закалка (закалка в горячих средах) основана на изотермическом распадении аустенита. Охлаждение ведется до температуры несколько выше начала мартенситного превращения (200—300 °С) в зависимости от марки стали. В качестве охладителя используют соленые расплавы или масло, нагретое до 200—250 °С. При температуре горячей ванны заготовка выдерживается продолжительное время, пока пройдет инкубационный период и период превращения аустенита (кривая 4 на рис. 2). В результате получается структура бейнита, по твердости близкая к мартенситу, но более вязкая и пластичная. Последующее охлаждение производится на воздухе.

При изотермической закалке вначале требуется быстрое охлаждение со скоростью не менее критической, чтобы избежать распадения аустенита. Следовательно, по этому методу можно закаливать лишь небольшие (диаметром примерно до 8 мм) заготовки из углеродистой стали, так как массивные заготовки не удается быстро охладить. Это не относится однако к легированным сталям, большинство марок которых имеют значительно меньшие критические скорости закалки. Большим преимуществом изотермической закалки является возможность рихтовки (выправления искривлений) заготовок во время инкубационного периода превращения аустенита (который длится несколько минут), когда сталь еще пластична.

Закалка при помощи газовой горелки. Кислородно-ацетиленовое пламя газовой горелки с температурой около 3200 °С направляется на поверхность закаливаемой заготовки и быстро нагревает ее поверхностный слой до температуры выше критической. Вслед за горелкой перемещается трубка, из которой на поверхность заготовки направляется струя воды, закаливая нагретый слой. Этот способ применяется для изделий с большой поверхностью (например, для прокатных валков, зубьев больших шестерен и т. д.).

Закалка токами высокой частоты по методу В. П. Вологдина нашла очень широкое применение в промышленности, так как отличается высокой производительностью, легко поддается автоматизации.

Обработка холодом. Этот метод применяется для повышения твердости стали путем перевода остаточного аустенита закаленной стали в мартенсит. Холодом обрабатывают углеродистую сталь, содержащую больше 0,5 % С, у которой температура конца мартен-ситного превращения находится ниже 00 С, а также легированную сталь (например, быстрорежущую).

Отпуск стали. Отпуск смягчает действие закалки, снимает или уменьшает остаточные напряжения, повышает вязкость, уменьшает твердость и хрупкость стали. Отпуск производится путем нагрева заготовок до температуры ниже критической; при этом в зависимости от температуры могут быть получены структуры мартенсита, троостита или сорбита отпуска.

При низком отпуске (нагрев до температуры 150—200 °С) в структуре стали в основном остается мартенсит, который однако имеет другую решетку, как сказано выше. Кроме того, начинается выделение карбидов железа из пересыщенного твердого раствора углерода в -железе и начальное скопление их небольшими группами. Это влечет за собой некоторое уменьшение твердости и увеличение вязкости стали, а также уменьшение внутренних напряжений в заготовках. Для низкого отпуска, заготовки выдерживают в течение определенного времени обычно в масляных или солевых ваннах. Если для низкого отпуска заготовки нагревают в атмосфере воздуха, то для контроля температуры часто пользуются цветами побежалости, появляющимися на зачищенной поверхности заготовки. Появление этих цветов связано с интерференцией белого цвета в пленках оксида железа, возникающих на поверхности заготовки при ее нагреве. Для углеродистой стали в интервале температур от 220 до 330 °С в зависимости от толщины пленки цвет изменяется от светло-желтого до серого. Для легированной стали соответствующие температуры выше. Низкий отпуск применяют для режущего инструмента из углеродистых и легированных сталей, измерительного инструмента, цементированных заготовок, а также других изделий, работающих в условиях трения на износ.

При среднем (нагрев в пределах 300—500 °С) и высоком (500—700 °С) отпуске структура мартенсита переходит соответственно в структуру троостита или сорбита. Чем выше температура отпуска, тем меньше твердость отпущенной стали и тем больше ее вязкость. При высоком отпуске сталь получает наилучшее сочетание механических свойств: повышенные прочность, вязкость и пластичность; поэтому закалку на мартенсит с последующим высоким отпуском называют улучшением стали. Средний отпуск применяют при производстве кузнечных штампов, пружин, рессор, а высокий—для многих деталей, подверженных действию высоких напряжений (например, осей автомобилей, шатунов двигателей).

studfiles.net