Домашние секреты – уют в доме своими руками! Винтовые компрессоры устройство принцип действия


Винтовые компрессоры устройство принцип действия

Содержание

Винтовые компрессоры постепенно вытеснили из сферы общепромышленного применения морально устаревшие аналоги с поршневыми головками сжатия. Главное преимущество винтовых установок – возможность работать в круглосуточном режиме. Также к достоинствам этих агрегатов относятся низкий уровень шума и вибрации. Все эти преимущества обусловлены конструкционными особенностями.

Устройство промышленного винтового компрессора

Современный винтовой компрессор относится к машинам объемного сжатия. В эту группу входят также поршневые и спиральные аппараты. Турбокомпрессоры – это машины динамического сжатия. Поршневые аппараты недостаточно надежны, а спиральные и центробежные установки сложны в производстве и – как следствие – дороже. Винтовые компрессоры оптимально сочетают высокую надежность, большой моторесурс и приемлемую стоимость.

Устройство механизма нагнетания

Главная часть установки – винтовая пара. Это узел нагнетания. Один шнек имеет выпуклую спиралевидную форму, второй – вогнутую. Оба ротора находятся в герметичной камере. Расстояние между винтами, а также до стенок полости измеряется микронами. Благодаря такому зазору исключен механический износ деталей. Во время работы этот промежуток заполняется смазывающей жидкостью. Масляный клин герметизирует полости, образованные впадинами шнеков. Винтовую пару приводит в движение электромотор. В недорогих моделях передача крутящего момента идет через клиноременный механизм. В установках современного типа вращение от двигателя на шнеки передает редуктор или система прямого привода с частотной регулировкой.

Принцип работы винтового компрессора

В процессе вращения каждая впадина вогнутого ротора периодически замыкается противолежащим выступом выпуклого винта. При продолжении вращательного движения, закрытая полость постепенно сдвигается от одного края шнеков к противоположному, уменьшаясь в объеме. Воздух сжимается.

Когда давление в камере достигает заданного порога, открывается клапан, рабочая среда поступает в пневматическую магистраль. Каждый шнек имеет пять борозд или впадин. При скорости вращения 2400 об/мин, получается около 12000 циклов нагнетания в минуту. По 200 раз в секунду. Благодаря такой особенности нагнетания винтовые компрессоры лишены одного из недостатков поршневых конкурентов – пульсации давления рабочей среды.

Рабочий цикл винтового компрессора

Воздух поступает в роторный блок через систему фильтрации. Первый элемент установлен на корпусе. Вторичный фильтр вмонтирован перед всасывающим клапаном, который нужен, чтобы не допустить обратный выброс, когда агрегат останавливается. В винтовом блоке воздух сжимается и поступает по выходному патрубку в сепараторный маслоотделитель. Поток движется по спирали, капли масла под действием центробежных сил оттесняются к стенкам емкости. Собранная смазывающая жидкость охлаждается в радиаторе, фильтруется, а затем возвращается в нагнетающий блок. Если температура смазки не превышает 70°C, она минует фазу охлаждения. Воздух из сепаратора поступает в охладитель. В процессе охлаждения до 70% водяных паров конденсируется. Затем рабочая среда попадает в систему подготовки, где очищается от остатков влаги, масла и твердых частиц. К потребителю подается сжатый воздух, концентрация масляных включений в котором не превышает 1.3 мл/куб. метр.

Автоматика винтового компрессора

Чтобы обеспечить автономное функционирование, разработчики оснащают винтовые компрессоры различной автоматикой:

Датчик термозащиты. Этот сенсор устанавливается на патрубке, выходящем из роторного блока. Если температура сжатого воздуха на выходе из камеры сжатия превысит 105°C, контроллер останавливает двигатель.

На приводящем электромоторе установлен автомат отключения, который реагирует на резкое повышение потребления энергии.

Предохранительный клапан на маслоотделителе. Это приспособление срабатывает, если давление в подконтрольном узле превысит установленное значение.

Термостат масляной смеси. Направляет смазывающую жидкость от сепаратора в блок нагнетания либо напрямую, либо через охлаждающий радиатор. Контролирует температуру.

Клапан холостого хода. Перекрывает всасывающий клапан при работе винтового компрессора в режиме холостых оборотов.

Реле минимального и максимального давления. Эти приборы автоматически поддерживают степень сжатия рабочей среды. Если лимит превышен – останавливают двигатель, если упал до нижнего порога – запускают.

В дорогих модификациях вместо реле давления используются электронные контроллеры, которые регулируют частоту вращения роторов. В результате осуществляется плавная регулировка производительности оборудования в диапазоне от 10 до 100%.

Градация винтовых компрессоров по типу смазки

Различают маслозаполненные и безмасляные винтовые компрессоры. У каждого типа оборудования есть сильные и слабые стороны. Это обусловило различия в сферах применения, стоимости, удобства эксплуатации.

Масляные винтовые компрессоры

Отличаются большим ресурсом, низким уровнем шума и высоким КПД. Эти преимущества обеспечивает наличие смазывающей жидкости. Масло предотвращает трение между роторами и стенками винтового блока, устраняя причину износа. Масляный клин обеспечивает герметичность в механизме нагнетания, что исключает протечки и утечки.

Отсутствие деталей, совершающих возвратно-поступательные или баллистические движения, обусловливает шумность в пределах от 60 до 80 дБ (при использовании кожуха). Привод выполнен на один шнек, второй – ведомый. Благодаря этой особенности упрощается конструкция, снижается вес, уменьшаются габариты. Косвенно такое инженерное решение помогает снизить уровень звукового давления. Меньшее количество деталей – большая степень надежности. Также масло выполняет охлаждающую функцию, помогая увеличить моторесурс.

Безмасляные винтовые компрессоры

Эти агрегаты незаменимы, когда предъявляются повышенные требования по чистоте рабочей среды. Сепараторы и линии подготовки не гарантируют 100% улавливание микроскопических капель масла. Полное отсутствие масляных примесей можно обеспечить только одним способом – исключить соприкосновение масла с воздухом в компрессоре. Для достижения этой цели применяются две технологии:

Сухое сжатие. Винтовой компрессор работает без смазки;

Использование в качестве смазывающей жидкости воды.

Технология сухого сжатия – это компромисс. Желая получить на выходе из винтового компрессора воздух без примесей масла, разработчики вынуждены жертвовать некоторыми техническими параметрами. Это ухудшает эксплуатационные характеристики оборудования. Роторы без масла приводятся в движение синхронизированными двигателями. Это усложняет конструкцию, уровень шума повышается. Отвод тепла без масла затруднен, поэтому воздух при сжатии сильно нагревается. Критическая отметка – до 3.5 бар. Чтобы сжимать рабочую среду сильнее, необходимо применять двухступенчатую систему с промежуточным охлаждением. Это делает конструкцию громоздкой, и, что гораздо важнее, неоправданно дорогой. Винтовые компрессоры с водяной смазкой. Это решение имеет преимущества перед конкурентами. Вода имеет большую удельную теплоемкость и теплопроводность, поэтому эффективно охлаждает механизмы. Это позволяет сжимать воздух до 13 атмосфер в одной ступени. Отсутствие масляных фильтров, сепараторов и резервуаров для сбора отработанного масла упрощает конструкцию и удешевляет производство.

Устройство винтового компрессора для перекачки газа

Газы транспортируются по герметичным системам трубопроводов, исключающих выброс в атмосферу. Чтобы обеспечить движение газовой среды, нужно создать на участке входа избыточное давление. Для этих целей используются компрессоры специальной конструкции. Это основная технология транспортировки газообразных углеводородов. Компримирование газа также используется для закачки его в резервуары различного объема. Сжиженный газ используется во многих сферах: от бытовых баллонов и топливных систем автотранспорта до промышленных подземных газовых хранилищ. Еще одна область, где применяются газовые винтовые компрессоры – системы охлаждения и кондиционирования. В качестве хладагента используют фреон или аммиак. В процессе компримирования эти газы переходят в жидкое состояние.

При попадании в расширитель внутреннее давление жидкости падает, она закипает, отбирая энергию из окружающей среды. Испарившийся газ вновь собирается и сжимается компрессором. Цикл повторяется заново. Наиболее сложный в техническом плане участок любой газопроводной системы – это компрессор. Здесь генерируется избыточное давление, поэтому к герметичности предъявляются повышенные требования.

Газовые компрессорные установки оборудуются мощными системами охлаждения, так как газ при компримировании сильно нагревается. Винтовые компрессоры применяются для сжатия рабочей среды до 20 атмосфер. Компактные габариты в сочетании с относительно небольшим весом позволяют устанавливать эти агрегаты на передвижные станции. Мобильное компрессорное оборудование имеет более скромные рабочие параметры: максимальная компрессия – до 8 бар. Наиболее эффективно эти машины работают при сжатии легких газов с высокой текучестью: гелий, водород, азот.

Теги: устройство винтового компрессора, устройство винтового компрессора и его схема, компрессор винтовой воздушный устройство, винтовой компрессор устройство и принцип, устройство промышленного винтового компрессора, устройство винтового компрессора для перекачки газа, винтовой компрессор устройство и принцип работы видео, электрическая схема винтовой компрессор.

www.compressor-mash.ru

Компрессоры, применяющиеся в холодильной технике

В статье представлен краткий обзор компрессоров, применяющихся в холодильной технике, и описан их принцип действия.

Компрессор – основной элемент парокомпрессионной холодильной машины. Компрессор это устройство, предназначенное для сжатия и перемещения холодильного агента.

На базе компрессоров собирают компрессорные, компрессорно-испарительные, компрессорно-конденсаторные агрегаты, а также комплектных холодильные машины.

Компрессорный агрегат - агрегат, в состав которого входят компрессор и другое, как правило, унифицированное для различных холодильных систем дополнительное энергетическое и штатное оборудование, но без конденсатора и ресивера.

Компрессорно-конденсаторный агрегат - агрегат, в состав которого входят один или несколько компрессоров и другое, как правило, унифицированное для различных холодильных систем штатное оборудование, в том числе один или несколько конденсаторов и, возможно, ресивера.

Моноблочная холодильная система - автономная холодильная система, собранная и прошедшая испытания на месте изготовления и не требующая при монтаже соединения частей, содержащих хладагент. Моноблочная система может включать в себя переходники и отсечные вентили, смонтированные на заводе.

По принципу действия компрессора, наиболее широко применяющиеся в холодильной технике, бывают двух типов: объемные и динамические. В компрессорах объемного принципа действия сжатие газообразного хладагента происходит за счет уменьшения начального объема. В компрессорах динамического принципа действия хладагент непрерывно перемещается с большой скоростью через проточную часть компрессора, при этом кинетическая энергия потока преобразуется в потенциальную, а плотность хладагента повышается.

К компрессорам объемного принципа действия относятся поршневые, винтовые, ротационные, спиральные и линейные компрессоры.

К компрессорам динамического принципа действия относятся центробежные компрессоры.

По конструктивному исполнению компрессоры делятся на герметичные (рис. 1), полугерметичные (рис. 2) и открытые (сальниковые) рис. 3.

Рис. 1 Герметичные компрессоры.jpg

Герметичные компрессоры представляют собой агрегат, где механическая часть компрессора и электродвигатель находятся в герметичном кожухе, как правило, такие компрессоры обладают невысокой производительностью и являются практически неремонтопригодными, поскольку для разборки компрессора необходимо разрезать, а затем снова сварить герметичный корпус.

Рис. 2 Полугерметичные компрессоры.jpg

У полугерметичных компрессоров механическая часть и электродвигатель также находятся в одном корпусе, но в отличие от герметичных, компрессор можно разобрать и собрать, не повреждая корпус. Компрессоры данного типа применяются для средних производительностей.

Рис. 3 Открытые (сальниковые) компрессоры.jpg

В открытых (сальниковых) компрессорах механическая часть находится в одном корпусе, а электродвигатель находится за пределами корпуса компрессора. Привод таких компрессоров осуществляется через муфту. Как правило, такие компрессоры применяются для средних и больших производительностей, но для некоторых специальных применений (транспортное холодильное оборудование, аммиачные системы и т. д.) возможно применение компрессоров и меньшей производительности.

Принцип действия поршневого компрессора

Принцип работы поршневого компрессора (рис. 4) и описывается соотношением P1V1=P2V2 (при постоянной температуре).

Индекс 1 относится к состоянию газообразного хладагента на входе в компрессор, индекс 2 - к состоянию сжатого хладагента.

1. Когда поршень опускается, в цилиндре образуется свободное пространство, и в результате перепада давления открывается всасывающий клапан, через который газообразный хладагент всасывается в камеру сжатия.

2. Затем, когда поршень проходит точку, соответствующую наибольшему объему камеры сжатия, всасывающий клапан закрывается, и давление хладагента начинает возрастать.

3. По мере уменьшения объема камеры сжатия давление хладагента увеличивается.

4. Когда давление в камере достигает заданных параметров, открывается нагнетательный клапан, и сжатый хладагент покидает камеру сжатия.

Рис. 4.jpg

Принцип действия винтового компрессора.(рис. 5)

Рис. 5.jpg

Первая стадия. Воздух проходит через впускное отверстие и попадает в открытые полости роторов на стороне всасывания. После чего всасывающее окно закрывается и начинается процесс сжатия

Вторая и Третья Стадия Сжатия. Поскольку роторы вращаются в противоположных направлениях, открытые полости закрываются и объем полостей постепенно уменьшается из-за чего происходит повышение давления. Одновременно с этим процессом происходит впрыск масла. Это необходимо для уплотнения зазоров между роторами и стенками корпуса, для отвода тепла и смазки подшипников.

Четвертая Стадия. Нагнетание. Когда процесс сжатия закончен и достигнуто необходимое давление - сжатый воздух выталкивается в специально спрофилированное нагнетательное окно

Принцип действия ротационного компрессора

Компрессор со стационарными пластинами

Рис. 6.jpg

а. Хладагент заполняет имеющееся пространство

б. Начинается сжатие хладагета внутри компрессора и всасывание новой порции хладагента

в. Сжатие и всасывание продолжается

г. Сжатие завершено

Компрессор с вращающимися пластинами

Рис 7.jpg

В компрессоре с вращающимися пластинами (рис. 7) хладагент сжимается при помощи пластин, закрепленных на вращающемся роторе. Ось ротора смещена относительно оси цилиндра компрессора. Края пластин плотно прилегают к поверхности цилиндра, разделяя области высокого и низкого давления.

а. Парообразный хладагент заполняет имеющееся пространство

б. Начинается сжатие хладагента внутри компрессора и всасывание новой порции хладагента

в. Сжатие и всасывание завершается.

г. Начинается новый цикл всасывания и сжатия.

Принцип действия спирального компрессора (рис. 8)

Рис. 8.jpg

Компрессор состоит из двух спиралей, вставленных одна в другую. Внутренняя спираль неподвижно закреплена, а внешняя вращается вокруг нее.

Спирали имеют особый профиль (эвольвента), позволяющий перекатываться без проскальзывания. Подвижная спираль компрессора установлена на эксцентрике и перекатывается по внутренней поверхности другой спирали. При этом точка касания спиралей постепенно перемещается от края к центру. Хладагент, находящийся перед линией касания, сжимается, и выталкивается в центральное отверстие в крышке компрессора. Точки касания расположены на каждом витке внутренней спирали, поэтому хладагент сжимается более плавно, меньшими порциями, чем в других типах компрессоров. В результате нагрузка на электродвигатель компрессора снижается, особенно в момент пуска компрессора.

Через входное отверстие в цилиндрической части корпуса, поступающий воздух охлаждает двигатель, затем сжимается между спиралей и выходит через выпускное отверстие в верхней части корпуса компрессора.

Принцип действия линейного компрессора

Рис. 9.jpg

Принцип действия линейных компрессоров (рис. 9) основан на возвратно-поступательном движении поршня, однако это движение осуществляется за счет электромагнитного поля, создаваемого обмоткой электродвигателя. Такая конструкция позволяет снизить энергопотребление компрессора на значительную величину (до 45 %) и минимизировать уровень шума.

Принцип действия центробежного компрессора

Рис. 10.jpg

Динамический компрессор — машина с непрерывным потоком, в которой при протекании газа происходит рост давления газа (рис. 10). Вращающиеся лопатки рабочего колеса компрессора приводят к ускорению газа до высокой скорости, после чего скорость газа при расширении преобразуется в давление и соответственно уменьшается. В зависимости от основного направления потока компрессоры могут быть радиальными или осевыми.

В отличие от объемных компрессоров в динамических компрессорах даже небольшое изменение рабочего давления приводит к большому изменению производительности.

Каждая скорость характеризуется верхним и нижним пределами производительности. При верхнем пределе скорость потока газа достигает скорости звука. При достижении нижнего предела противодавление превышает создаваемое компрессором давление, что означает обратный поток газа в компрессоре. Это в свою очередь вызывает пульсацию, шум и риск механической поломки компрессора

Таким образом, в холодильной технике применяется большое количество компрессоров, отличающихся как по принципу действия, так и по конструктивному исполнению. Мы расскажем об особенностях конструкции различных компрессоров в следующих статьях.

holodonline.com

Винтовой компрессор: назначение, применение, принцип действия | Домашние секреты

Винтовой компрессор — оборудование для выработки сжатого воздуха, с помощью которого приводятся в действие разнообразные пневматические инструменты (отбойные молотки, перфораторы и тому подобные устройства). Применение винтовых компрессоров весьма обширно: их используют при ремонтных и дорожно-строительных работах, в обслуживании трубопроводов и других производственных процессах.

Винтовой компрессор: назначение, применение, принцип действия

По сравнению с другими типами компрессоров — поршневым и центробежным — винтовой компрессор обладает целым рядом преимуществ: компактность, малый вес, низкий уровень шума (до 70 дБ) и расширенные функциональные возможности. Объединив несколько компрессоров в систему, им можно задать необходимый режим работы с помощью электронного пульта управления; в то же время, существуют модели с упрощенным запуском — например, винтовые компрессоры Ремеза без пульта, цена которых несколько ниже компрессоров с микропроцессорным контроллером. Обслуживать винтовой компрессор, в отличие от поршневого, способен даже неквалифицированный сотрудник — этот вид оборудования рассчитан на долговременную эксплуатацию и обладает высоким моторесурсом (до 40 000 моточасов без капитального ремонта).

Всеми этими качествами винтовой (ротационный) компрессор обязан своему простому и надежному устройству — двум вращающимся в зацеплении роторам, между лопастями которых и сжимается воздух. По сравнению с поршневыми компрессорами, винтовые не требуют регулярной обильной смазки; это одновременно упрощает процесс эксплуатации и улучшает качество сжатого воздуха на выходе (остаточное содержание масла в нем, после разделения воздуха и масла в сепараторе, составляет не более 3 мг\м3). Существуют и безмасляные винтовые компрессоры, которые используются там, где подаваемый воздух не должен содержать никаких примесей — например, в фармацевтической промышленности.

Читайте также статьи по теме:

Реклама наших партнеров:

Категория: Строительство и ремонт  |   |  Trackback

home-secret.ru

Принцип работы винтового компрессора - Парангон

Принцип винтового компрессора был запатентован шведским инженером Лисхольмом в 1932году. На протяжении многих лет винтовые компрессоры значительно совершенствовались конструктивно и технологически, хотя и до сих пор этот тип компрессорных машин достаточно сложен в изготовлении и требует специальной высокоточной технологии нарезки роторов, обеспечивающей точность изготовления до 10 микрон. Сейчас среди наиболее распространенных типов компрессоров винтовые являются самыми предпочтительными и прочно занимают нишу в диапазоне производительностей компрессоров от 1 до 50 м3/мин.

Принцип винтового компрессора был запатентован шведским инженером Лисхольмом в 1932году. На протяжении многих лет винтовые компрессоры значительно совершенствовались конструктивно и технологически, хотя и до сих пор этот тип компрессорных машин достаточно сложен в изготовлении и требует специальной высокоточной технологии нарезки роторов, обеспечивающей точность изготовления до 10 микрон. Сейчас среди наиболее распространенных типов компрессоров винтовые являются самыми предпочтительными и прочно занимают нишу в диапазоне производительностей компрессоров от 1 до 50 м3/мин.

По характеристикам надежности, долговечности, и моторесурсу до 40000 моточасов, компактности и по массе винтовой компрессор значительно, более чем в 2,5 раза превосходит поршневую машину. Кроме того винтовой компрессор является полностью уравновешенным, не производит больших вибраций и не нуждается в серьезном фундаменте, нормальные рабочие температуры внутри винтовых компрессоров не превышают 80-900С, поэтому такие компрессоры наиболее безопасны и безаварийны. По своим удельным энергетическим характеристикам 5,8-6,2 кВт/м3 современный винтовой компрессор ни в чем не уступает поршневым машинам.

Рабочими органами винтового компрессора являются высокоточные, рационально конфигурированные винты с передаточным отношением 5:6, которые вращаются внутри корпуса. Корпус имеет цилиндрическую расточку в форме восьмерки и специально спрофилированные окна всасывания и нагнетания. Нагрузки от роторов воспринимаются осевыми и радиальными подшипниками качения. В мультипликаторном варианте для получения оптимальной скорости вращения ведущего винта 4000-6000 об/мин служит повышающая передача, состоящая из шлифованных косозубых зубчатых колес. В компрессорах прямого привода вращение осуществляется непосредственно за ведущий винт.При взаимном вращении роторов воздух засасывается во внутренние полости компрессора, которые затем уменьшаются в объеме и сжимают воздух.

В маслозаполненных винтовых компрессорах внутрь рабочей полости сжатия впрыскивается большое количество масла 8-10 л/м3/мин, которое загромождает технологические зазоры и тем самым герметизирует компрессор. Кроме того масло отводит теплоту сжатия, охлаждая компрессор, смазывает механизм движения и глушит шум. В отличии от поршневых машин, в винтовых маслозаполненных компрессорах за счет такого внутреннего охлаждения становится возможным получать высокие степени сжатия до 12 кгс/см2 даже в одной ступени.

Для очистки сжатого воздуха от масла на нагнетании винтового компрессора устанавливается маслоотделитель (сепаратор). Сжатый воздух, проходя через циклон и фильтр маслоотделителя очищается от аэрозолей масла и подается потребителю очищенным с содержанием масла не более 0,035 г/м3.

Схема ременной привод компрессора винтрового

Условные обозначения:

1 Воздушный фильтр. 2 Впускной клапан. 3 Винтовой блок. 4 Маслобак (первичный сепаратор). 5 Сепаратор тонкой очистки. 6 Комбинированный радиатор. 7 Обратный клапан. 8 Вентилятор радиатора с эл. двиг. 9 Масляный фильтр. 10 Главный электродвигатель. 11 Ременная передача. 12 Комбинированный блок со встроенным термостатом и клапаном мин. давления.

Схема прямой привод

Условные обозначения:

1 Воздушный фильтр. 2 Впускной клапан. 3 Винтовой блок. 4 Маслобак (первичный сепаратор). 5 Внутренний сепаратор. 6 Комбинированный радиатор. 8 Вентилятор радиатора с эл. двиг. 9 Масляный фильтр. 10 Главный электродвигатель. 11 Прямая передача (муфта). 13 Термостатический клапан. 14 Клапан мин. давления

Атмосферный воздух через воздушный фильтр (1) и впускной клапан (2) поступает в винтовой блок (3), который является сердцем винтового компрессора. Здесь он смешивается с маслом, для охлаждения и уплотнения зазоров, циркулирующим по замкнутому контуру, и образовавшаяся воздушно- масляная смесь нагнетается с помощью винтового блока в пневмосистему. Первичное разделение масла и воздуха происходит в маслобаке (4). Предварительно очищенный от масла воздух проходит доочистку в сепараторе тонкой очистки или во встроенном внутреннем сепараторе (5). Затем через охлаждающий комбинированный радиатор (6) сжатый воздух поступает на выход компрессора. Основной поток масла из маслобака возвращается в винтовой блок через масляный фильтр (9). Масло, в зависимости от температуры, проходит либо по малому кругу, либо по большому кругу через комбинированный радиатор (6). Регулировка осуществляется с помощью термостата, встроенного в комбинированный блок (12) либо термостатическим клапаном (13). Отделившееся масло в сепараторе тонкой очистки (5) отводится в винтовой блок (3). Винтовой блок(3) приводится в движение главным электродвигателем (10) посредством ременной (прямой) передачи (11). Комбинированный радиатор (6) обдувается воздухом с помощью вентилятора (8)

parangonv.ru