Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494. Tl494 схема пусковое устройство


TL494 ШИМ — КОНТРОЛЛЕР — DataSheet

Корпус TL494

1 Характеристики

  • Готовый ШИМ — контроллер
  • Незадействованные выводы для 200 мА приемника или источника тока
  • Выбор однотактного или двухтактного режима работы
  • Внутренняя схема запрещает двойной импульс на выходе
  • Изменяемое время задержки обеспечивает контроль всего спектра
  • Внутренний регулятор обеспечивает 5 В стабильного напряжения с допуском 5%
  • Схема архитектуры позволяет легко синхронизироваться

2 Применение

  • Настольные ПК
  • Микроволновые печи

Источники питания: AC/DC; изолированный; с коррекцией коэффициента мощности; >90 Вт

  • Серверы БП
  • Солнечные микро-преобразователи
  • Стиральные машины классов : Low-End и High-End
  • Электровелосипеды
  • Источники питания: AC/DC; изолированный; без коррекции коэффициента мощности; <90 Вт
  • Датчики дыма
  • Солнечные преобразователи

3 Описание

TL 494 включает в себя все функции необходимые для построения  схемы управления широтно-импульсной модуляцией (ШИМ) на одном кристалле. Предназначен в основном для управления питанием, это устройство дает гибкость для конкретного применения  в адаптации в схемах управления блоков питания. TL 494 содержит два усилителя ошибки, внутренний регулируемый генератор, (DTC) управляемый компаратор временной задержки, импульсно управляемый переключатель, источник опорного напряжения 5В ± 5%, контроль выходной цепи.

Усилители ошибки выдают синфазное напряжение в диапазоне -0.3 В to Vcc — 2 В. Компаратор времени задержки имеет фиксированное смещение, что дает 5% временную задержку. Внутренний генератор можно обойти путем отключения вывода RT и подключения пилообразного напряжения к CT, что применяется для общих цепей в синхронизации источников питания.

Независимые выходные формирователи на транзисторах дают возможность подключать нагрузку по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. TL494 может работать в однотактном и двухтактном режиме. Архитектура устройства не дает возможности подачи двойного импульса в двухтактном режиме.

TL494C  может работать в диапазоне температур от 0°C до 70°C. TL494I работает в диапазоне температур от –40°C до 85°C.

Серийный номер Корпус(кол-во выводов) Размеры
TL 494 SOIC (16) 9.90 мм × 3.91 мм
PDIP (16) 19.30 мм × 6.35 мм
SOP (16) 10.30 мм × 5.30 мм
TSSOP (16) 5.00 мм × 4.40 мм

 

4 Расположение и назначение выводов

Цоколевка TL494Цоколевка TL494
Вывод Тип Описание
Название Номер
1IN+ 1 I Неинвертирующий вход усилителя ошибки 1
1IN- 2 I Инвертирующий вход усилителя ошибки 1
2IN+ 16 I Неинвертирующий вход усилителя ошибки 2
2IN- 15 I Инвертирующий вход усилителя ошибки 2
C1 8 O Коллектор Биполярного Плоскостного Транзистора (БПТ) 1
C2 11 O Коллектор БПТ 2
CT 5 Вывод для подключения конденсатора для установки частоты генератора
DTC 4 I Вход компаратора задержки времени
E1 9 O Эмиттер БПТ 1
E2 10 O Эмиттер БПТ 2
FEEDBACK 3 I Вывод для обратной связи
GND 7 Общий
OUTPUT CTRL 13 I Выбор режима работы
REF 14 O Опорное напряжение 5В
RT 6 Вывод для подключения резистора для установки частоты генератора
VCC 12 Напряжение питания (+)

 

5 Спецификация

 

5.1 Абсолютные максимальные значения

Мин. Макс. Ед. Изм.
VCC  Напряжение питания 41 В
VI       Напряжение на входе усилителя VCC + 0.3 В
VO     Напряжение на коллекторе 41 В
IO       Ток коллектора 250 мА
        Температура припоя 1,6 мм в течении 10 сек. 260 °C
Tstg   Температура хранения –65 150 °C

 

5.2 Значения электростатического заряда

Макс. Ед. изм.
V(ESD) Электростатический заряд Модель человеческого тела (HBM), посредством ANSI/ESDA/JEDEC JS-001, все выводы 500 В
Модель заряда на устройстве (CDM), посредством JEDEC спецификации JESD22-C101, все выводы 200 В

 

5.3 Рекомендуемые рабочие значения

Мин. Макс. Ед. Изм.
VCC  Напряжение питания 7 40 В
VI       Напряжение на входе усилителя -0,3 VCC – 2 В
VO     Напряжение на коллекторе 40 В
        Ток коллектора (каждого транзистора) 200 мА
        Ток обратной связи 0,3 мА
 fOSC Частота генератора 1 300 мА
CT       Емкость конденсатора генератора 0,47 10000 кГц
RT     Сопротивление резистора генератора 1,8 500 кОм
TA       Рабочая температура на открытом воздухе 0 70 °C
-40 85 °C

 

5.4 Тепловые характеристики

В рабочем диапазоне температур на открытом воздухе

Параметр TL494 Ед. изм.
D DB N NS PW
RθJA Полное тепловое сопротивление для корпуса 73 82 67 64 108 °C/Вт

 

5.5 Электрические характеристики

В рабочем диапазоне температур на открытом воздухе, VCC = 15 В, f = 10 кГц

Параметр Условия испытаний(1) TL494C, TL494I Ед. изм
Мин. Тип.(2) Макс.
Выходное напряжение (REF) IO = 1 мА 4.75 5 5.25 В
Регулировка входа VCC от 7 В до 40 V 2 25 мВ
Регулировка выхода IO от 1 мА to 10 мА 1 15 мВ
Изменение выходного напряжения при температуре ΔTA от MIN до MAX 2 10 мВ/В
Выходной ток короткого замыкания(3) REF = 0 V 25 мА

(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.

(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

(3) Продолжительность короткого замыкания не должна превышать одну секунду.

 

5.6 Электрические характеристики генератора

CT = 0,01 мкФ, RT = 12 кОм

Параметр Условия испытаний(1) TL494C, TL494I Ед. изм.
Мин. Тип.(2) Макс.
Частота 10 кГц
Стандартное отклонение частоты(3) Все значения VCC, CT, RT, и TA постоянны 100 Гц/кГц
Изменение частоты от напряжения VCC от 7 В до 40 В, TA = 25°C 1 Гц/кГц
Изменение частоты от температуры(4) ΔTA  —  от MIN до MAX 10 Гц/кГц

(1) Для условий указанных как MIN или MAX используются соответствующие значения, указанные в рекомендуемых условиях эксплуатации.

(2) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

(3) Стандартное отклонение является мерой статистического распределения относительно среднего рассчитанного по формуле:

Стандартное отклонение частоты

(4) Температурный коэффициент конденсатора и резистора не учитываются.

 

5.7 Электрические характеристики усилителя ошибки

Параметр Условия испытаний TL494C, TL494I Ед. изм.
Мин. Тип.(1) Макс.
Входное напряжение смещения VO (FEEDBACK) = 2.5 В 2 10 мВ
Входной ток смещения VO (FEEDBACK) = 2.5 В 25 250 нА
Входной ток смещения VO (FEEDBACK) = 2.5 В 0.2 1 мкА
Диапазон входного напряжения VCC от 7 В до 40 В -0.3 до VCC – 2 В
Коэффициент усиления разомкнутой цепи ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм 70 95 dB
Полоса пропускания ΔVO = 3 В, VO = 0.5 В — 3.5 В, RL = 2 кОм 800 кГц
Коэффициент подавления синфазных сигналов ΔVO = 40 В, TA = 25°C 65 80 dB
Выходной ток приемника(FEEDBACK) VID = –15 мВ до –5 В, V (FEEDBACK) = 0.7 В 0.3 0.7 мА
Выходной ток источника(FEEDBACK) VID = 15 мВ до  5 В, V (FEEDBACK) = 3.5 В -2 мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

 

5.8 Выходные электрические характеристики

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Ток коллектора в закрытом состоянии VCE = 40 В, VCC = 40 В 2 100 мкА
Ток эмиттера в закрытом состоянии VCC = VC = 40 В, VE = 0 -100 мкА
Напряжение насыщения коллектор — эмиттер Общий эмиттер VE = 0,  IC = 200 мА 1.1 1.3 В
Эмиттерный повторитель VO(C1 или C2) = 15 В, IE = –200 мА 1.5 2.5
Выходной контроль входного тока VI = Vref 3.5 мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

 

5.9 Электрические характеристики управления временем задержки

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Входной ток смещения (DEAD-TIME CTRL) VI от 0 до 5.25 В -2 -10 мкА
Максимальная скважность импульсов на каждом выходе VI (DEAD-TIME CTRL) = 0, CT = 0.01 мкФ, RT = 12 кОм 45%
Входное пороговое напряжение (DEAD-TIME CTRL) Нулевой коэффициент заполнения 3 3.3 В
Максимальная скважность 0

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

 

5.10 Электрические характеристики ШИМ — компаратора

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Входное пороговое напряжение (FEEDBACK) Нулевая скважность 4 4.5 В
Входной ток приемника (FEEDBACK) V (FEEDBACK) = 0.7 В 0.3 0.7 мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

 

5.11 Общие электрические характеристики устройства

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Ток потребляемый в режиме ожидания RT = Vref, Все остальные входы и выходы отключены VCC = 15 В 6 9 мА
VCC = 40 В 10 15
Средний потребляемый ток VI (DEAD-TIME CTRL) = 2 В, 7.5 мА

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

 

5.12 Коммутационные характеристики

TA = 25°C

Параметр Условия испытаний Мин. Тип.(1) Макс. Ед. изм.
Время нарастания Схема с общим эмиттером 100 200 нс
Время спада 25 100 нс
Время нарастания Схема эмиттерного повторителя 100 200 нс
Время спада 40 100 нс

(1) Все типичные значения, за исключением изменения параметров температуры, установлены при TA = 25°C.

 

5.13 Типовые характеристики

Частота генератора

Рис. 1 Частота колебаний генератора и ее отклонение от сопротивления резистора генератора

Усиление напряжения

Рис. 2 Усиление напряжения от частоты

Передаточные характеристики

Рис. 3 Усилитель ошибки — передаточные характеристики

График Боде

Рис. 4 Усилитель ошибки — график Боде

 

6 Измеряемые параметры

Испытательная схема для tl494

Графики напряжения на выводах

Рис. 5 Проверка работы цепи и осциллограммы

 

Характеристики усилителя

Рис. 6 Характеристики усилителя

 

Схема включения с общим эмиттером

Прим. А: CL включает датчик и управляющую емкость

Рис. 7 Схема включения с общим эмиттером

 

Схема включения эмиттерного повторителя

Прим. А: CL включает датчик и управляющую емкость

Рис. 8 Схема включения эмиттерного повторителя

 

Применение

Схема включения для коммутации и управленияРис. 9 Схема включения для коммутации и управления
  • VI = 32 В
  • VO = 5 В
  • IO = 10 A
  • fOSC = 20-кГц частота коммутации
  • VR = 20-мВ размах напряжения (VRIPPLE)
  • ΔIL = 1.5-A изменение тока индуктора
Купить TL494 на АлиэкспрессКупить TL494 на Алиэкспресс

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

rudatasheet.ru

Tool Electric: TL494 описание на русском

1114ЕУ4    Микросхема TL494 обеспечивают разработчику расширенные возможности при конструировании схем управления источников питания. Микросхемы TL493/4/5 включают в себя усилители ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный источник опорного напряжения на 5В и схему управления выходным каскадом. Усилители ошибки выдают синфазное напряжение в диапазоне от –0,3…(Vcc-2) В. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%. Полным отечественным аналогом микросхемы TL494 является отечественная 1114ЕУ4.    Допускается синхронизация встроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем источников питания.    Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме. Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур -–5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С.

Основные характеристики микросхемы TL494:

Напряжение питания…………………………………………………………….41ВВходное напряжение усилителя………………………………………...(Vcc+0.3)ВВыходное напряжение коллектора…………………………………………...…41ВВыходной ток коллектора………………………………………………….…250мАОбщая мощность рассеивания в непрерывном режиме……………………….1ВтРабочий диапазон температур окружающей среды:-c суффиксом L………………………………………………………………-25..85С-с суффиксом С………………………………………………………………..0..70СДиапазон температур хранения ………………………………………..-65…+150С

цоколёвка    Микросхема TL494 представляет из себя ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установке частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле: TL494    Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами. Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).    Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразно напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.    Увеличит длительность мертвого времени на выходе, можно подавая на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого входом регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В. Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и обьеденины функцией ИЛИ не неинвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2. Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота равна половине частоты генератора. Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Это желательно, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.    Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до 70С.    Так же можете посмотреть схемы на TL494.

www.tool-electric.ru

ШИМ – контроллер. TL494

Полный набор функций ШИМ-управленияВыходной втекающий или вытекающий ток каждого выхода …..200мАВозможна работа в двухтактном или однотактном режимеВстроенная схема подавления сдвоенных импульсовШирокий диапазон регулировки Выходное опорное напряжение……5В +-05% Просто организуемая синхронизация

Особенности:

  • Полный набор функций ШИМ-управления
  • Выходной втекающий или вытекающий ток каждого выхода …..200мА
  • Возможна работа в двухтактном или однотактном режиме
  • Встроенная схема подавления сдвоенных импульсов
  • Широкий диапазон регулировки
  • Выходное опорное напряжение…………………………………….5В +-05%
  • Просто организуемая синхронизация

Общее описание:

1114ЕУ3/4 – TL494

Специально созданные для построения ИБП, микросхемы TL493/4/5 обеспечивают разработчику расширенные возможности при конструировании схем управления ИБП. Приборы TL493/4/5 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.

Допускается синхронизация вcтроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИБП.

Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме.

Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур -–5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С. 

Структурная схема:

Цоколевка корпуса:

Предельные значения параметров:

Напряжение питания…………………………………………………………….41В

Входное напряжение усилителя………………………………………...(Vcc+0.3)В

Выходное напряжение коллектора…………………………………………...…41В

Выходной ток коллектора………………………………………………….…250мА

Общая мощность рассеивания в непрерывном режиме……………………….1Вт

Рабочий диапазон температур окружающей среды:

-c суффиксом L………………………………………………………………-25..85С

-с суффиксом С………………………………………………………………..0..70С

Диапазон температур хранения ………………………………………..-65…+150С

Функциональное описание:

Микросхема TL494 представляет из себя ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле:

Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами (см. временную диаграмму ). Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).

Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.

Увеличит длительность мертвого времени на выходе, можно подавая на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого входом регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В. Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и объеденины функцией ИЛИ на неинвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2. Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота равна половине частоты генератора. Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Это желательно, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.

Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до 70С.

Image26

 

СПРАВОЧНИК.Издательство Додэка.1997

shemu.ru

Зарядное устройство с микросхемой TL494 и нормализатором напряжения шунта - Зарядные устройства (для авто) - Источники питания

Ниже описан вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на бОльшую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта. В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 ... 0,1 Ом и мощностью 1 ... 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 ... 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 ... 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 ... 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 ... 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.

Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.

 

Требования к элементной базе описаны на предыдущих страницах. Правильно собранная схема начинает работать сразу и, практически, не требует наладки. Описанная конструкция, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.

cxema.my1.ru

Зарядное устройство с микросхемой TL494 - Зарядные устройства (для авто) - Источники питания

Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA491, К1114УЕ4). Устройство обеспечивает регулировку тока заряда в пределах 1 ... 6 А (10А max) и выходного напряжения 2 ... 20 В.

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 - VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 ... 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. Требования к его изготовлению описаны в предыдущей схеме. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 ... 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 ... 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации - необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера. При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке.

В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10А и напряжение 50В, в крайнем случае можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 ... 100 кОм. Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.

Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке ниже.

 

В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2. Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.

cxema.my1.ru

Зарядное устройство для автомобильного аккумулятора на TL494 - Самоделкин - сделай сам своими руками

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 - VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 ... 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 ... 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 ... 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается.

1

 Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации - необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера. При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке.

2

В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10А и напряжение 50В, в крайнем случае можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 ... 100 кОм. Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор.

3

Монтажная схема подключения печатной платы приведена на рисунке ниже.

4

В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2. Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.

Источник: http://shemotehnik.ru

Самоделкин - Сделай сам, своими руками.

 

samodelkyn.3dn.ru

Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494

Рассказать в: Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а регулировочные характеристики выше , чем у предыдущей схемы.Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494Предлагаемое устройство имеет стабильную плавную регулировку действующего значения выходного тока в пределах 0,1 ... 6А, что позволяет заряжать любые аккумуляторы, а не только автомобильные. При зарядке маломощных аккумуляторов желательно последовательно в цепь включить балластный резистор сопротивлением несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть достаточно большим из-за особенностей работы тиристорных регуляторов. С целью уменьшения пикового значения тока зарядки в таких схемах обычно применяют силовые трансформаторы с ограниченной мощностью, не превышающей 80 - 100 Вт и мягкой нагрузочной характеристикой, что позволяет обойтись без дополнительного балластного сопротивления или дросселя. Особенностью предлагаемой схемы является необычное использование широко распространённой микросхемы TL494 (KIA494, К1114УЕ4). Задающий генератор микросхемы работает на низкой частоте и синхронизирован с полуволнами сетевого напряжения с помощью узла на оптроне U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока. Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй используется для ограничения выходного напряжения, что позволяет отключить зарядный ток по достижению на аккумуляторе напряжения полной зарядки ( для автомобильных аккумуляторов Uмах = 14,8 В) . На ОУ DA2 собран узел усилителя напряжения шунта для возможности регулирования тока зарядки. При использовании шунта R14 с другим сопротивлением потребуется подбор резистора R15. Сопротивление должно быть таким, чтобы при максимальном выходном токе не наблюдалось насыщение выходного каскада ОУ. Чем больше сопротивление R15, тем меньше минимальный выходной ток, но уменьшается и максимальный ток за счёт насыщения ОУ. Резистором R10 ограничивают верхнюю границу выходного тока. Основная часть схемы собрана на печатной плате размером 85 х 30 мм (см. рисунок).Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494Конденсатор С7 напаян прямо на печатные проводники. Чертёж печатной платы в натуральную величину можно скачать здесь.В качестве измерительного прибора использован микроамперметр с самодельной шкалой, калибровка показаний которого производится резисторами R16 и R19. Можно использовать цифровой измеритель тока и напряжения, как показано в схеме зарядного с цифровой индикацией. Следует иметь ввиду, что измерение выходного тока таким прибором производится с большой погрешностью из-за его импульсного характера, но в большинстве случаев это несущественно. В схеме можно применять любые доступные транзисторные оптроны, например АОТ127, АОТ128. Операционный усилитель DA2 можно заменить практически любым доступным ОУ , а конденсатор С6 может быть исключён, если ОУ имеет внутреннюю частотную коррекцию. Транзистор VT1 можно заменить на КТ315 или любой маломощный. В качестве VT2 можно использовать транзисторы КТ814 В, Г; КТ817В, Г и другие. В качестве тиристора VS1 может использоваться любой доступный с подходящими техническими характеристиками, например отечественный КУ202, импортные 2N6504 ... 09, C122(A1) и другие. Диодный мост VD7 можно собрать из любых доступных силовых диодов с подходящими характеристиками.На втором рисунке показана схема внешних подключений печатной платы. Наладка устройства сводится к подбору сопротивления R15 под конкретный шунт, в качестве которого можно применить любые проволочные резисторы сопротивлением 0,02 ... 0,2 Ом, мощность которых достаточна для длительного протекания тока до 6 А. После настройки схемы подбирают R16, R19 под конкретный измерительный прибор и шкалу.Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494 Раздел: [Зарядные устройства (для авто)] Сохрани статью в: Оставь свой комментарий или вопрос:

www.cavr.ru