СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ. Стабилизатор напряжения на 10 а


Схема стабилизатора напряжения - простой расчёт

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Схема стабилизатора напряжения

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

Схема стабилизатора напряжения

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Схема стабилизатора напряжения

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

Схема стабилизатора напряжения

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

Схема стабилизатора напряжения

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

Схема стабилизатора напряжения

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

Схема стабилизатора напряжения

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Схема стабилизатора напряжения

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

Схема стабилизатора напряжения

На 1-м рисунке схема на транзисторе 2SC1061.

Схема стабилизатора напряжения

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

ostabilizatore.ru

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Схема регулируемого стабилизатора

Схема регулируемого стабилизатора

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и  припаял его к плате с помощью проводков.

IRLZ24/32/44

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Схема для плавной регулировки напряжения постоянного тока

Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Плата плавной регулировки напряжения постоянного тока

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Фото подстрочного резистора типа WH06-1, WH06-2

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

на плату припаять две колодки

Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).

плата для дискретных элементов схемы

Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала - Егор.

   Форум по БП

   Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

radioskot.ru

Регулируемый стабилизатор тока | Все своими руками

Опубликовал admin | Дата 16 сентября, 2013

     На рисунке один изображена схема стабилизатора тока на 10А. Схема регулируемого стабилизатора тока приведена на рисунке 2.

     Величина тока стабилизации в схеме, изображенной на рис.1, полностью зависит от номинала резистора R3, найти переменный резистор с таким маленьким номиналом практически невозможно.

Стабилизатор тока на 10А. Стабилизатор тока на 5А.

Стабилизатор тока на 10А. Стабилизатор тока на 5А.

     Да и мощность, выделяемая на этом резисторе относительно большая, например, при токе пять ампер и величине сопротивления 0,24 Ом, на данном резисторе выделится мощность Р = I 2 • R = 5 • 5 • 0,24 = 6Вт. Поэтому самый простой выход, это применить магазин сопротивлений, подключаемых тумблерами, как показано на рисунке 2. Все резисторы в магазине имеют одинаковый номинал. Резистор R6 включен в схему постоянно и ток стабилизации при этом будет равен 1А, мощность, выделяемая на этом резисторе, будет равна 1,2Вт. При подключении параллельно ему еще одного резистора, ток стабилизации увеличится до двух ампер, если в параллель будет включено три резистора, то ток будет равен – 3А, … четыре резистора – 4А и так далее. Дискретность изменения тока стабилизации в данном случае равна одному амперу. Меняя номиналы резисторов и количество тумблеров, можно получить необходимую вам величину регулировки тока стабилизации. Недостатком данной схемы является большое количество тумблеров и резисторов. Достоинство – все просто, можно обойтись без печатной платы. При больших рабочих токах, протекающих через транзистор, необходим радиатор соответствующей величины. Прикинуть площадь радиатора можно здесь.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:79 836

www.kondratev-v.ru

Трехвыводные стабилизаторы напряжения - Практическая электроника

Согласитесь, бывают  случаи, когда для питания электронных безделушек требуется стабильное напряжение, которое  не зависит от нагрузки, например,  5 Вольт для питания схемы на микроконтроллере или скажем 12 Вольт  для питания автомагнитолы. Чтобы не переворачивать весь инет и собирать сложные схемы на транзисторах, инженеры-конструктора  придумали так называемые стабилизаторы напряжения. Это словосочетание говорит само за себя. На выходе такого элемента мы получим напряжение, на которое спроектирован этот стабилизатор.

В нашей статье мы  рассмотрим трехвыводные стабилизаторы напряжения семейства LM78ХХ.  Серия 78ХХ выпускаются в металлических корпусах  ТО-3 (слева)  и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо «ХХ» изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 — 15 Вольт. Все очень просто. А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

Думаю, можно подробнее объяснить что есть что. На рисунке мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения кондеров, можно, и даже желательно поставить большего номинала.  Это требуется для уменьшения пульсаций как  по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью Как получить из переменного напряжения постоянное. Какое же напряжение подавать, чтобы стабилизатор работал чики-пуки? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Смотрите, из скольки транзисторов, резисторов  и диодов Шотки  и даже конденсатора состоит один стабилизатор!  А прикиньте, если бы мы эту схемку собирали из элементов?  =)

Идем дальше. Нас интересуют вот эти характеристики. Output voltage — выходное напряжение. Input voltage — входное  напряжение. Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для презеционной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 — 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может «колыхаться» в диапазоне от 7,5  и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и заключается вся прелесть стабилизаторов.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт — это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об  охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток  на выходе, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался кулером, как проц в компе.

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как Вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме 

Берем нашу Макетную плату  и быстренько собираем вышепредложенную схемку подключения. Два желтеньких  — это кондерчики.

Итак,  провода 1,2 — сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напругу в диапазоне 7.5 Вольт и  до 20 Вольт. В данном случае я поставил напругу 8.52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? Опаньки — 5.04 Вольта! Вот такое значение мы  получим на выходе этого стабилизатора, если будем подавать напругу в диапазоне от 7.5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входящую напругу.  По даташиту можно подавать на него входную   напругу  от 14.5 и до 27 Вольт. Задаем 15 Вольт с копейками.

 А вот и напруга на выходе. Блин, каких то 0.3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт?  Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических кондера-фильтра, для устранения пульсаций, и высокостабильный блок питания на 5 Вольт к Вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе транса тоже получить большее напряжение. Стремитесь, чтобы на кондере С1 напруга была не меньше, чем в даташите на описываемый  стабилизатор.

Для того, чтобы стабилизатор не перегревался и не надо было бы ставить большие радиаторы с обдувом, если у Вас есть возможность, заводите на вход минимальное напряжение, написанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт,  а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем,  что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU, где U — напряжение, а  I — сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность — это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Все большему числу электронных  устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданныи и не очень приятным последствиям.  Используйте же  на здоровье достижения электроники, и не замарачивайтесь по поводу питания своих электронных безделушек. И не забывайте про радиаторы ;-).

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке.

www.ruselectronic.com

Простой стабилизатор напряжения | Все своими руками

Опубликовал admin | Дата 30 сентября, 2011

Здравствуйте дорогой читатель. После того, как появились трехвыводные стабилизаторы напряжения, жизнь для разработчиков линейных блоков питания стала лучше, жизнь стала веселее. И я тоже к ним пристрастился — удобная штука. И каких только схем на них не встретишь.

Здесь приводится типовая схема включения регулируемого трехвыводного стабилизатора напряжения на микросхеме LM117, наш полный аналог — КР142ЕН12А.

Максимальное входное напряжение КР142ЕН12А равно сорок пять вольт, минимальное входное — пять вольт. Особенно хорош верхний порог входного напряжения этой микросхемы, есть шансы, что она останется жива при аномальном перенапряжении первичной сети.

Диапазон выходных напряжений от 1,25 до 37 вольт — достойный диапазон. Максимальный выходной ток микросхемы с соответствующим радиатором составляет полтора ампера. Так как я воспитывался в оборонной промышленности, то и все элементы схем стараюсь использовать на 30 максимум на 50% от их предельно-допустимых параметров. Так стабилизатор, собранный по этой схеме с выходным напряжением 13,6 вольт и током нагрузки 400ма работает уже одиннадцать лет. Рассчитать радиатор самому очень сложно, поэтому я их подбираю. Оставляю такой радиатор, при котором температура самой микросхемы не превышала 40-50 градусов при максимальной нагрузке. Во всем должен быть запас. Конденсатор С1 на схеме необходим, если длина провода от конденсаторов фильтра до микросхемы больше восьми сантиметров. R1 может принимать значения от 220 до 270ом и устанавливать его лучше прямо на выводы микросхемы,  при  этом время пайки должно быть не более трех секунд. Резистор R2 можно оставить подстроечным, Но если вы делаете блок питания под конкретное напряжение, его следует заменить постоянным, сами понимаете — контакт, да еще и скользящий — опасная штука. R2 можно рассчитать по формуле — R2=R1x (Uвых/1,25 — 1). Собираясь делать радиоаппаратуру, не забывайте о том, где она у вас будет работать, или под одеялом дома, или в поле зимой на ветру. От климатических условий зависит и выбор радиокомпонентов по диапазону рабочих температур.До свидания К.В.Ю.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:123 606

www.kondratev-v.ru

Схема простого стабилизатора постоянного напряжения на опорном стабилитроне.

 

 

 

Тема: схема стабилизированного блока питания на стабилитроне и транзисторе.

 

Для некоторых электрических цепей и схем вполне хватает обычного блока питания, не имеющего стабилизации. Источники тока такого типа обычно состоят из понижающего трансформатора, выпрямительного диодного моста и фильтрующего конденсатора. Выходное напряжение блока питания зависит от количества витков вторичной обмотки на понижающем трансформаторе. Но как известно сетевое напряжение 220 вольт нестабильно. Оно может колебаться в некоторых пределах (200-235 вольт). Следовательно и выходное напряжение на трансформаторе тоже будет «плавать» (в место допустим 12 вольт будет 10-14, или около того).

 

Электротехника, которая особо не капризна к небольшим изменения питающего постоянного напряжения может обойтись таким вот простым блоком питания. Но вот более чувствительная электроника уже это не терпит, она от этого даже может выйти из строя. Так что возникает необходимость в дополнительный схеме стабилизации постоянного выходного напряжения. В этой статье я привожу электрическую схему достаточно простого стабилизатора постоянного напряжения, который имеет стабилитрон и транзистор. Именно стабилитрон выступает в роли опорного элемента, который определяет и стабилизирует выходное напряжения блока питания.

 

 

Теперь давайте перейдем к непосредственному разбору электрической схемы простого стабилизатора постоянного напряжения. Итак, к примеру у нас имеется понижающий трансформатор с выходным переменным напряжением в 12 вольт. Эти самые 12 вольт мы подаем на вход нашей схемы, а именно на диодный мост и фильтрующий конденсатор. Диодный выпрямитель VD1 из переменного тока делает постоянный (но скачкообразный). Его диоды должны быть рассчитаны на ту максимальную силу тока (с небольшим запасом где-то 25%), который может выдавать блок питания. Ну, и напряжение их (обратное) должно быть не ниже выходного.

 

 

Фильтрующий конденсатор C1 сглаживает эти скачки напряжения, делая форму постоянного напряжения более ровной (хотя и не идеальной). Его емкость должна быть от 1000 мкф до 10 000 мкф. Напряжение, также больше выходного. Учтите, что есть такой вот эффект — переменное напряжение после диодного моста и фильтрующего конденсатора электролита увеличивается примерно на 18%. Следовательно в итоге мы уже получим на выходе не 12 вольт, а где-то 14,5.

 

Теперь начинается часть стабилизатора постоянного напряжения. Основным функциональным элементом тут является сам стабилитрон. Напомню, что стабилитроны имеют способность в некоторых пределах стабильно держать на себе определенное постоянное напряжение (напряжение стабилизации) при обратном своем включении. При подачи на стабилитрон напряжения от 0 до напряжения стабилизации оно просто будет увеличиваться (на концах стабилитрона). Дойдя до уровня стабилизации напряжение будет оставаться неизменным (с незначительным ростом), а расти начнет сила тока, протекающего через него.

 

В нашей схеме простого стабилизатора, который на выходе должен выдавать 12 вольт, стабилитрон VD2 рассчитан на напряжение 12,6 (поставим стабилитрон на 13 вольт, это соответствует Д814Д). Почему 12,6 вольт? Потому, что 0,6 вольт осядут на транзисторном переходе эмиттер-база. А на выходе получится ровно 12 вольт. Ну, а поскольку мы ставим стабилитрон на 13 вольт, то на выходе БП будет где-то 12,4 В.

 

Стабилитрон VD2 (создающим место опорного постоянного напряжения) нуждается в ограничителе тока, который будет предохранять его от чрезмерного перегрева. На схеме эту роль выполняет резистор R1. Как видно он подключен последовательно стабилитрону VD2. Еще один фильтрующий конденсатор электролит C2 стоит параллельно стабилитрону. Его задача также сглаживать излишки пульсаций напряжения. Можно обойтись и без него, но все же лучше будет с ним!

 

Далее на схеме мы видим биполярный транзистор VT1, который подключен по схеме общий коллектором. Напомню, схемы подключения биполярных транзисторов по типу общий коллектор (это еще называется эмиттерный повторитель) характеризуются тем, что они значительно усиливают силу тока, но при этом нет никакого усиления по напряжению (даже оно немного меньше входного, именно на те самые 0,6 вольт). Следовательно мы на выходе транзистора получаем то постоянное напряжение, которое имеется на его входе (а именно напряжение опорного стабилитрона, равное 13 вольтам). И поскольку эмиттерный переход на себе оставляет 0,6 вольта, то и на выходе транзистора уже будет не 13, а 12,4 вольта.

 

 

Как вы должны знать, чтобы транзистор начал открываться (пропускать через себя управляемые токи по цепи коллектор-эмиттер) ему нужен резистор для создания смещения. Эту задачу выполняет все тот же резистор R1. Изменяя его номинал (в определенных пределах) можно менять силу тока на выходе транзистора, а значит и на выходе нашего стабилизированного блока питания. Тем, кто желает с этим поэкспериментировать советую на место R1 поставить подстроечное сопротивление номиналом около 47 килоом. Подстраивая его смотрите, как будет изменяться сила тока на выходе блока питания.

 

Ну, и на выходе схемы простого стабилизатора постоянного напряжения стоит еще один небольшой фильтрующий конденсатор электролит C3, сглаживающий пульсации на выходе стабилизированного блока питания. Параллельно ему припаян резистор нагрузки R2. Он замыкает эмиттер транзистора VT1 на минус схемы. Как видим схема достаточно проста. Содержит минимум компонентов. Она обеспечивает вполне стабильное напряжение на своем выходе. Для питания многой электротехники данного стабилизированного блока питания будет вполне хватать. Данный транзистор рассчитан на максимальную силу тока в 8 ампер. Следовательно для такого тока нужен радиатор, который будет отводить излишек тепла от транзистора.

 

P.S. Если параллельно стабилитрону поставить еще переменный резистор номиналом 10 килоом (средний вывод подсоединяем к базе транзистора), то в итоге мы получим уже регулируемый блок питания. На нем можно плавно изменять выходное напряжение от 0 до максимума (напряжение стабилитрона минус те самые 0,6 вольт). Думаю такая схема уже будет более востребована.

 

electrohobby.ru

СТАБИЛИЗАТОР ТОКА НА 10 А

СТАБИЛИЗАТОР ТОКА НА 10 А

AS,  г.Псков.

Схемы стабилизаторов тока, в отличие от стабилизаторов напряжения, редко встречаются на страницах печати. Вместе с тем, на практике бывают случаи, когда требуется применение именно стабилизированного постоянного тока, например, при зарядке аккумуляторов, нанесении гальванических покрытий, в измерительной технике. Предлагаю простой и надежный стабилизатор тока с дистанционным включением и отключением.

Схема стабилизатора (рис.1) включает выпрямитель, стабилизатор тока на операционном усилителе, силовые ключи, узел индикации и измеритель тока.

Параметры стабилизатора:

Диапазон регулировки тока, А                         0...10,0

Сопротивление нагрузки, Ом                             0...1,3

Амплитудное значение

пульсаций тока (при 10 А),мА, не более              40

Напряжение на разомкнутых контактах, В        16

Напряжение со вторичной обмотки силового трансформатора Т1 выпрямляется мостом VD1...VD4 и фильтруется конденсатором С1. После соединения выходных клемм "1" и "2" с нагрузкой, образуется контур протекания тока — через регулирующий транзистор VT2, шунт RS1 и общий провод. Регулировка тока осуществляется изменением напряжения на не инвертирующем входе операционного усилителя DA1. На инвертирующий вход подается напряжение, выделяющееся на шунте RS1 при протекании тока. Разностное напряжение подается на составной транзистор VT1, VT2, и благодаря этому операционный усилитель поддерживает постоянное падение напряжения на RS1. При этом выходной ток устанавливается в соответствии с соотношением

                     I=Un/ RS1'

где Un — падение напряжения на RS1.

Шунт RS1 используется также для измерения тока в цепи с помощью микроамперметра с пределом измерения 100 мкА. Напряжение, выделенное на шунте RS1, делится резисторами R2, R3, причем регулируя R3, можно установить такое соотношение, чтобы протекающему току в 10 А соответствовало отклонение стрелки на последнюю отметку шкалы измерительного прибора. В этом случае требуется минимальная переделка шкалы. Такое включение прибора позволяет не предъявлять высоких требований к точности изготовления шунта, что обычно вызывает трудности.

Схема на транзисторах VT3, VT4 служит для дистанционного включения тока. При нажатии на кнопку S2 "ИЗМ." или замыкании контактов 1 и 3 разъема Х1 "ДУ", открывается ключ VT3 и закрывается VT4. При этом управление VT1 осуществляется от операционного усилителя. При снятии потенциала с базы VT3 транзистор VT4 открывается, через него база VT1 соединяется с общим проводом, и силовой транзистор VT4 оказывается запертым. Ток через нагрузку не течет. Это дает возможность осуществлять подключение нагрузки при обесточенных цепях, не выключая стабилизатор, а также управлять длительностью и моментом включения тока с помощью дистанционного пульта.

Точность установки тока можно повысить, применив готовый модуль измерителя с аналого-цифровым преобразователем и индикатором на жидких кристаллах. Фирма Falcon производит модули двух типоразмеров — DPM951 и DPM952, которые представляют собой готовый милливольтметр с широкими функциональными возможностями.

Схема стабилизатора тока с использованием модуля DPM951 приведена на рис.2, вид индикаторной панели и конструктивные размеры модулей — на рис.3 и в табл.1, назначение контактов входного разъема модулей — в табл.2, а параметры — в табл.3.

Табл.1

 РАЗМЕРЫ

 

DPM951

 

DPM952

 

А

19

20

В

48

72

С

24

36

D

45

68

Е

14

14

Табл.2

1

INHI

Вход +

2

INLO

Вход-

3

VDD

Напряжение питания +5 В или +9 В

4

VSS

Масса

5

COMMON

Аналоговая масса

6

BL+

Управление яркостью

7

REFLO

Дополнительный вход -

8

REF HL

Дополнительный вход +

9

Symbol AN

Включение децимальной точки

10

Symbol AUS

Отключение децимальной точки

11

offen

Свободный

12

DP3

Децимальная точка 1.999

13

DP2

Децимальная точка 19.99

14

DP1

Децимальная точка 199.9

Табл.3

Параметр

Мин

Тип    

 

Макс.

 

Ед. изм.

Погрешность измерения ±ед.мл.разр.)

 

 

0,05

0,!

%

Период измерения

 

 

333

 

 

МС

Температурная стабильность

 

 

30

 

 

ед.мл.р.ЛС

Температурный диапазон

0

 

 

50

°С

Напряжение питания в 5 В варианте включения

3

5

7

В

Напряжение питания в 9 В варианте включения

7

9

12

В

Потребляемый ток

 

 

2

 

 

мА

Входное сопротивление

100

 

 

 

 

МОм

 

Подробную информацию об этих модулях можно найти в Internet www.trumeter.com. Приобрести модуль можно по почте за российские рубли, обратившись в представительство Conrad Electronic в г.С.-Петербурге (пр.М.Тореза, 118. Тел.(812)553-20-85). Кстати, они высылают прекрасно иллюстрированный цветной каталог по электронике (свыше 1200 стр.), где можно найти все необходимое, начиная от инструментов и радиокомпонентов импортного производства и заканчивая приборами и сложной бытовой электронной техникой. Модуль DPM951 или DPM952 под ключается вместо микроамперметра, но для его питания необходимо собрать стабилизированный источник +5 В. Проще всего это сделать с использованием интегрального стабилизатора КР142ЕН5. Так как ток потребления невелик,радиатор для него не требуется. Для питания стабилизатора нужно домотать еще одну обмотку на трансформаторе проводом ПВТЛ-0,12, количество витков — 10. Напряжение на этой обмотке при отключенной нагрузке должно быть порядка 7...8 В. Схема стабилизатора дополнена узлом индикации тока, в котором используется незадействованный усилитель микросхемы К1401УД2.

Конструкция стабилизатора. Корпус стабилизатора — металлический, настольный. Габаритные размеры корпуса — 440х170х340 мм. Узел управления стабилизатором и стабилизированный источник собраны на печатных платах, а остальные детали соединены методом навесного монтажа. Монтаж силовых цепей следует выполнить проводом ПГВА-1.0. Для снижения нестабильности общую точку необходимо изготовить в виде изолированной стойки с луженой пластиной,к которой припаиваются необходимые проводники.

Трансформатор Т1 —типа ОСМ-0,4. Напряжение вторичной обмотки — порядка 13В. При изготовлении трансформатора все вторичные обмотки удаляются, и вместо них наматывается обмотка медной изолированной шиной сечением 1х6 мм. Количество витков — 18.

Шунт RS1 лучше всего изготовить из константановой полосы или проволоки сечением 2,5 мм2. Сопротивление шунта должно быть 0,5 Ом ±20%. Можно также использовать резистор С5-43 0,47 Ом 100 Вт±10%. Все постоянные резисторы, за исключением RS1 — типа МЛТ-0,25. В качестве переменного резистора для регулировки тока использован СП1 1 кОм, а для настройки амперметра СП5-1В 150 Ом.

Транзистор VT2 ТК235-40 необходимо установить на радиатор с эффективной площадью не менее 350 см2. Транзистор КТ819 полезно также снабдить небольшим радиатором. Силовые диоды —любые, на ток 10 А. Они оснащены теплоотводами из пластин дюралюминия толщиной 2,5...4 мм размерами 20х3 мм.

Транзисторы КТ503Е можно заменить на ВС337-25, в крайнем случае, на КТ315А...Е. Вместо транзистора ТК235-40 можно использовать ТК235-32, ТК142-40 или ТК135-25.

Конденсатор фильтра обеспечивает амплитудное значение пульсаций выходного тока на заданном уровне. При некотором снижении требований емкость конденсатора можно уменьшить до 10 000 мкФ или использовать два конденсатора 4700 мкфх25 В, включенные параллельно.

Настройка. После проверки правильности монтажа схемы (рис.1) необходимо замкнуть перемычками контакты 1 и 3 разъема ДУ и выходные контакты "1" и "2". Подключив стабилизатор к сети переменного тока, проконтролировать зажигание сетевого индикатора. Изменяя ток регулятором, следует убедиться в возможности изменения показаний стрелочного прибора, но пока стрелочный прибор не настроен, увлекаться этим не следует.

Настройку измерительного прибора осуществляют резистором R3. Для этого к выходным клеммам вместо перемычки следует подключить образцовый амперметр и, установив регулятором ток 10 А по образцовому амперметру, отрегулировать стрелочный прибор РА1 с помощью R3 так, чтобы он показывал 10,0. Регулировку верхней границы тока осуществляют подбором резистора R7 и изменением сопротивления шунта. После подбора резистора R7 необходимо проконтролировать линейность регулировочной характеристики, и если она имеет участок, на котором ток при регулировке слабо меняется, уменьшить сопротивление шунта. После этих операций следует также подрегулировать R3.

Методика настройки стабилизатора с цифровым модулем остается такой же, но чтобы наиболее полно реализовать высокую точность измерений тока, в этом случае придется воспользоваться образцовым цифровым амперметром или цифровым милливольтметром со стандартным шунтом ШСМ75А 75 мВ (кл.0.2). В последнем случае потенциальные контакты стандартного шунта подключают ко входу прибора на пределе 10 мВ (20 мВ), а через токовые контакты пропускают ток. Показание 1 мВ будет соответствовать току 1 А. Затем резистором R3 подгоняются показания DPM, как и в первом случае.

После этого необходимо проверить работу схемы при дистанционном включении тока. Для этого снимают перемычку с разъема ДУ, при этом ток должен упасть до 0. В моей конструкции, кроме разъема ДУ, для включения тока предусмотрена кнопка S2, поскольку стабилизатор использовался совместно с цифровым вольтметром для контроля падения напряжения на участках измеряемых цепей. Для удобства вместо кнопки S2 можно установить тумблер.

  Hosted by uCoz

martok.narod.ru