Как быстро отремонтировать импульсный блок питания своими руками. Ремонт импульсного блока питания


определяем неисправности — ищем пути решения

Телевизор Bravis LED-16E96B после перепада напряжения.

Блок питания собран на ШИМ контроллере SW2658a .Микросхема редкая, но как не странно есть в наличии даташит. И больше ничего.

SW2658-типовая-схема. Адаптер БП китайского телевизора.

Адаптер питания, как положено погиб со спецэффектами.Сам телевизор не пострадал, проверил с помощью рабочего блока питания.

Адаптер вскрывается с помощью не острой отвёртки и молотка. Лёгкими ударами по шву. Затем широкой отверткой разлущивается дальше.

Визуально, вздулся один из сетевых конденсаторов 15 мкф х 400 вольт.Естественно оборван предохранитель. Грохнуло хорошо, плату местами пришлось отмывать спиртом.

Поначалу даже не сообразил, от чего закоптилась плата. Позже вызвонил под силиконом оборванный дроссель L1 намотанный на ферритовом сердечнике. Пермотал тем же проводом.

Пришлось выкинуть всего сантиметров 15 провода. Намотано было виток к витку. Мотал не так аккуратно, первые слои ровно, дальше как получилось. На работоспособности это никак не отразилось.

Дроссель в БП с отгоревшим проводом

Пришлось вспомнить старую технологию)Взял любимый ШИМ контроллер, который раньше ставил в DVD , приёмники, адаптеры… 5H0165R.

Схема импульсного блока питания на ШИМ контроллере 5H0165R

Открыл два даташита и посмотрел насколько это взаимозаменяемо.

Убирать ничего не понадобилось, добавлять тоже. Нужно только сформовать выводы как показано на фотографии.

Общий вид блока питания, формовка выводов 5H0165R вместо SW2658A

solution SW2658A — 5H0165R

Первый запуск как обычно через лампочку 220 вольт, 100 ватт, чтобы ничего не прибило в случае прозеванной неисправности.

SW2658A меняется на 5H0165R . Не сказать что это аналог, но работать будет даже надежнее чем родная микросхема.

Для повышения надежности прикрутил к 5H0165R небольшой радиатор в виде алюминиевой пластинки, и насверлил отверстий 3 мм на верхней крышке адаптера.

Сетевые адаптеры питания – миниатюрные блоки питания различной электронной бытовой аппаратуры применяются для питания антенных усилителей, радиотелефонов, зарядных устройств. Несмотря на активное внедрение импульсных блоков питания, трансформаторные блоки питания ещё активно используются и находят применение в быту пользователя.

Нередки случаи, что данные трансформаторные блоки выходят из строя, ломаются.

При поломке адаптера можно его заменить новым, стоимость их невелика. Но зачем отдавать кровные, если в большинстве случаев можно устранить неисправность самому в течение 15 – 30 минут и избавить себя от поисков замены и траты денег?

Итак, разберём состав обычного маломощного блока питания и его ремонт

На стол ремонта попал адаптер на 12В и ток 100mA мощностью 3,6 Ватт от антенного усилителя.

На фото адаптер после произведённого ремонта.

Из каких частей состоит обычный трансформаторный адаптер?

Если разобрать адаптер, то внутри мы обнаружим трансформатор(1 ) и небольшую электронную схему (2 ).

Трансформатор (1 ) служит для понижения переменного сетевого напряжения 220В до уровня 13 – 15 В.

Электронная схема служит для выпрямления переменного напряжения (превращение его в постоянное напряжение) и стабилизации выходного напряжения на уровне 12 В.Всё просто. Что же может сломаться в таком простом устройстве?

Взглянем на принципиальную схему данного адаптера.

На принципиальной схеме T1 – трансформатор . Типичными неисправностями трансформатора являются перегорание или обрыв провода первичной, реже вторичной обмотки. Как правило, неисправна первичная, сетевая обмотка (1 ).

Причиной обрыва или перегорания служит тонкий провод, который не выдерживает сетевых всплесков напряжения и перегрузок. Скажем спасибо китайцам, они экономные ребята, потолще провод не хотят мотать…

Проверить исправность трансформатора довольно просто. Необходимо измерить сопротивление первичной и вторичной обмоток. Сопротивление первичной обмотки должно составлять несколько единиц килоом (1кОм = 1000 Ом), вторичной – несколько десятков Ом.

При проверке трансформатора адаптера для первичной обмотки сопротивление оказалось 1,8 кОм, что свидетельствует об исправности первичной обмотки.

Для вторичной обмотки сопротивление составило 25,5 Ом , что тоже нормально.

При отсутствии индикации следует замерить сопротивление первичной обмотки трансформатора. Сделать это легко, можно даже не разбирать блок питания, а замерить сопротивление обмотки через контакты сетевой вилки.

Разбираем блок питания, производим внешний осмотр. Обращаем внимание на потемневшие участки вокруг радиодеталей, сколы и трещ

levevg.ru

Ремонт импульсных блоков питания

Ремонт импульсных блоков питания

Если вы ремонтировали ИБП, то вы наверняка сталкивались с такой ситуацией: все неисправные элементы заменены, оставшиеся вроде бы проверены, а включаете телевизор и… бац… и все надо начинать сначала! В радиотехнике чудес не бывает и, если что-то не работает, то на это есть причина! Наша задача – найти ее!

ИБП – самый ненадежный узел в современных радиоустройствах. Оно и понятно – огромные токи, большие напряжения – ведь через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

Большинство производителей применяют простые схемы ИБП. Оно и понятно. Наличие нескольких уровней защиты способно часто лишь усложнить ремонт и практически не влияют на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а нам при ремонте приходится долго разбираться, что это за детали и зачем они нужны. Конечно, каждый ИБП имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими характеристиками, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех ИБП практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

Я пользуюсь методикой, выработанной многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой.

Предложенная методика предполагает, что вы хоть немного знакомы с работой телевизора. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.Итак, ремонтируем блок питания.

Вам принесли телевизор или испортился свой.

* Включаете телевизор, убеждаетесь, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в ИБП. На всякий случай надо будет проверить напряжение питания строчной развертки.

* Выключаете телевизор, разбираете его.

* Внешний осмотр платы телевизора, особенно участка, где размещен ИБП. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и др. Надо будет в дальнейшем проверить их.

* Внимательно просмотрите пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.

* Проверьте цепь питания: прозвоните шнур питания, предохранитель, выключатель питания – если он есть, дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предхранитель не сгорает – просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.

* Недолго проверить остальные детали блока – диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.

* Надо посмотреть, нет ли замыканий во вторичных цепях питания – для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.

Выполнив все проверки и заменив неисправные детали, можно выполнить проверку под током. Для этого вместо сетевого предохранителя подключаем лампочку 150-200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила ИБП в случае, если неисправность не устранена. Отключите размагничивающее устройство.

Включаем.Возможны три варианта:

1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее сточную развертку – для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150-160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим, в некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть), или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.

2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что ИБП не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280-300 Вольт. Если его нет – иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено – может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.

3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните – чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.

На 95% неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.

Источник: cxem.net

Читайте также

rukikryki.ru

Методика поиска неисправности блока питания на примере ремонта.

Практический ремонт блока питания D-Link JTA0302D-E (5В*2А).

Давно созрела идея сделать методическое пособие по ремонту блоков питания выполненных на ШИМ контроллере UC384X. Пока только делаем наработки, которые должны собраться в единый материал. Сразу оговорюсь, сами мы по такой методике блоки питания на 384Х не ремонтируем, слишком долго, и в большинстве своем при ремонте больше полагаемся на интуицию и опыт. Но столкнувшись с неизвестной дрыгалкой (так мы называем ШИМ контроллер) работаем именно по этой методике.

Ремонт №1.

Начнем ремонт со схемы

Схема блока питания D-Link

Рис. Схема блока питания D-Link

  1. Самая первичная диагностика. Замеряем входное сопротивление со стороны входа и выхода. В обоих случаях не должно быть короткого замыкания. В нашем случае короткого замыкания нет и сопротивление входа выхода в пределах нормы. Входное сопротивление мы измеряем для того, что бы знать, есть смысл включать в розетку еще не разобранный блок питания. Если входное сопротивление слишком мало в пределах 50-1000 Ом, желательно сразу разбирать и смотреть, что могло выйти из строя.  Выходное сопротивление следует измерять на предмет короткого замыкания, следует отметить у блока питания на выходе стоят конденсаторы. При проверке есть шанс – прибор покажет короткое замыкание, однако через небольшой промежуток времени короткое замыкание исчезнет - конденсатор зарядится. Если же короткое замыкание не пропадает, возможно проблема в выходном проводе или подкорачивает в штекере. В нашем случае входное сопротивление колеблется от 600кОм до 1,5мОм (в зависмости от степени заряда конденсатора С1(22мкФ*400В), на выходе нет короткого замыкания.
    Важное замечание. Замерять входное сопротивление настоятельно рекомендуется, еще по одной причине. Рано или поздно по входному сопротивлению вы будете понимать живой или битый конденсатор на выходе первичного выпрямителя.
  2. Диагностическое включение. Первичная диагностика по сопротивлению показала входное сопротивление больше 600 кОм – это говорит о том, что блок питания можно включать в сеть.

    Важное замечание если есть хоть малейшее подозрение, что в первичной цепи блока питания есть дефект, рекомендуется включать на лампу накаливания 220В. Пример подключения на лампу. При таком включении при коротком замыкании в первичной цепи блока питания, у Вас не вышибет автоматик, а просто лампочка загорится во весь накал. 

    Подключение ремонтируемого блока питания на лампу.

    Рис. Подключение ремонтируемого блока питания на лампу накаливания 220В.

    На включенном в сеть блоке питания замеряем выходное напряжение. В нашем случае выходного напряжение 0в, то есть блок питания вообще не включается.

  3. Разбираем и делаем визуальный осмотр. По опыту хочется сказать, 50% всех ремонтов, делаются за счет замены неисправных деталей выявленных при визуальном осмотре. Для визуального осмотра Вам понадобится мощный источник света и увеличительное стекло (лупа). Для беглого осмотра достаточно каски (ремешок на голову на котором закреплены увеличительные стекла, как у сталеваров), для детального осмотра используем лупу с 20х увеличением. В нашем случае визуально ни чего не удалось обнаружить, можете попробовать сами, фото прилагаются.
    Блок питания D-Link JTA0302D-E, вид со стороны деталей Блок питания D-Link JTA0302D-E, вид со стороны деталей
    Рис. Блок питания D-Link JTA0302D-E, вид со стороны деталей Рис. Блок питания D-Link JTA0302D-E, вид со стороны печатной платы
    Хорошо подходит для этих целей лупа с подсветкой для определения фальшивых купюр.

     Снимаем лишнее, а именно корпус-вилку и подключаемся через обычный провод с вилкой на конце.

  4. Проверка выпрямителя. Включаем и смотрим напряжение на конденсаторе выпрямителя C1 (22мкФ*400В), напряжение около 306В, что говорит об исправности выпрямителя. Значит, неисправен или не работает ШИМ контроллер UC3843.
  5. Проверяем напряжение питания на ШИМ контроллере IC1(UC3843).Цепь запуска при включении, блок питания D-LinkРис. Цепь запуска при включении, блок питания D-Link
    К слову сказать на схеме указана UC3842B, у рассматриваемого блока питания стоит UC3843A. В  чипах,  обозначение  которых содержит  индекс «А»,  снижен  стартовый  ток  и  несколько  выше  точность  опорного напряжения,  но  стоимость  их  одинакова.

    На 7 ноге присутствует 7,6В, что соответствует напряжению выключения. Фактически ШИМ контроллер даже не включался, так как для включения требуется не менее 8,4В на этой ноге.  Замеряем так называемый пусковой конденсатор С6 (47мкФ*25В) емкость конденсатора 18мкФ.  Меняем конденсатор С6 (47мкФ*25В) на конденсатор 47мкФ*50В, напряжение на 7 ноге микросхемы появилось и стало равным 12В.

    Замена конденсатора на другой номинал вызвана тем, что на этом месте привычнее видеть конденсатор именно такого номинала, но и 25В тоже должен нормально работать, так как параллельно ему стоит защитный стабилитрон ZD1 на 20В.
    Осциллограмма напряжения питания на 7 ноге UC3842. Осциллограмма напряжения питания после замены конденсатора
    Рис. Форма напряжения питания на 7 ноге UC3842 до замены конденсатора С6. Рис. Форма напряжения питания после замены конденсатора С6.

      Собственно ремонт закончился. Напряжение на выходе стало в норме.

  6. Проверка выходного напряжения на нагрузку. Важный этап про который почему то, некоторые механики забывают. Подключаем на выход +5В -автомобильную лампу 12В ближний/дальний свет, лампа должна гореть довольно ярко даже на дальнем свете. Если блок питания не зажигает автомобильную лампу, выходные конденсаторы под замену. В нашем случае проверка на лампу прошла успешно.

  Вывод. Данный пример оказался не очень интересный в плане поиска неисправности, но он показывает очень характерную поломку для микросхемы ШИМ контроллера 384x, выход из строя пускового конденсатора.

  Практический ремонт. Как бы на самом деле происходил ремонт -общее время ремонта от начала до конца, с мини тех. прогоном 30 мин.

  1. Меряем входное, выходное сопротивление.
  2. Включаем, смотрим выходное напряжение.
  3. Разбираем, осматриваем, меняем пусковой конденсатор не задумываясь, без всяких замеров и осциллограмм.
  4. Включаем меряем выходное напряжение и выдаем из ремонта с проверкой на лампу 12В.

  Запуск и проверка от внешнего блока питания12В, моделирование работы ШИМ контроллера.

Моделирование работы UC3842

Рис. Запуск микросхемы UC3843A от внешнего блока питания.

Данная процедура позволяет проверить работоспособность микросхемы ШИМ контроллера. В рассматриваемом примере этого делать не надо так, как блок питания запустился полсе замены пускового конденсатора, материал изложен в ознакомительных целях. Кратко, на 5 и7 ногу подаем землю и +12В соответсвенно. На 8 ноге должно появится опорное напряжение +5В, на 4 ноге пила, на 6 ноге импульсы управляющие работой силового ключа.

Почему подано 12В?

Во первых, UC3843A напряжение включения 8,4В.

Во вторых, на входе по питанию в блоке питания стоит стабилитрон на 20В, так что больше 20 вольт подавать нельзя.

В третьих,  12 вольт лекго снять с обыкновенного блока питания ATX для компьютера.

 

zival.ru

Устройство и ремонт импульсных блоков питания, схемы.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Для ремонта импульсных блоков питания нужно знать основные принципы схемотехники.

Приведем схему типичного импульсного блока питания.

Принципиальная схема импульсного блока питания

Работа импульсного блока питания

Первичная цепь

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем идет фильтр CLC, причем катушка используется для подавления синфазных помех. Вслед за фильтром располагается схема выпрямления на основе диодного моста и электролитического конденсатора. Часто для защиты схемы от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливается варистор. Сопротивление варистора резко падает при повышенном напряжении, весь избыточный ток идет через него с предохранитель, который сгорает., выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания , если сгорит диодный мост. Диод не даст пройти отрицательному напряжению в основную схему, откроется, вызовет перегорание предохранителя.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения и первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи: коммутационный транзистор Q1 с ШИМ (широтно импульсным модулятором) контроллером управления. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное, которое преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

Для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Вторичная цепь

В выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр, состоящий из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Когда выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод, который включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается, пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Сгорел варистор и предохранитель на входе или VCR1. Как правило, они так просто не горят, нужно искать дальше.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду, но не всегда.
  4. Сгорел переключающий транзистор. Выпаиваем и проверяем. При неисправности требуется замена.
  5. Сгорел ШИМ регулятор. Меняем.
  6. Замыкание или обрыв обмоток трансформатора. Шансы на ремонт минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. КЗ в конденсаторах на выходе блока питания. Выпаиваем и диагностируем тестером.

www.complace.ru

Как быстро отремонтировать импульсный блок питания своими руками

В наше время практически все электроприборы бытового назначения имеют специальные приспособления, именуемые импульсными блоками. Они могут иметь вид как отдельного модуля, так и платы, размещенной в конструкции прибора.

Внешний вид блока питания

Импульсный блок питания

Поскольку импульсные блоки предназначены для выпрямления и понижения сетевого напряжения, то они могут часто выходить из строя. Поэтому, чтобы не покупать новое дорогостоящее бытовое устройство, знания о том, как его можно починить своими руками будут достаточно востребованными. О том, как выявить неисправности работы данного прибора или платы, а также как самостоятельно провести его ремонт, вам расскажет данная статья.

Описание преобразователя напряжения

Импульсный блок питания может иметь вид платы или самостоятельного выносного модуля. Он предназначен, как уже говорилось, для понижения и выпрямление сетевого напряжения. Его необходимость основывается на том, что в стандартной сети питания имеется напряжение в 220 вольт, а для работы многих бытовых приборов необходимо гораздо меньшее значение этого параметра.Сегодня, вместо стандартных понижающе-выпрямительных схем, собранных на основе диодного моста и силового трансформатора, используются блоки питания импульсного преобразования напряжения.

Обратите внимание! Несмотря на наличие высокой схемотехнической надежности, импульсные блоки питания часто ломаются. Поэтому в наше время очень актуален ремонт этих элементов электросхем.

Схематическое устройство импульсного блока питания

Схема импульсного блока питания

Все типы источника питания импульсного вида (встроенного или вынесенного за пределы прибора) имеют два функциональных блока:

  • высоковольтный. В таком блоке питания происходит преобразование сетевого напряжения в постоянное при помощи диодного моста. Причем напряжение сглаживается до уровня 300,0…310,0 вольт на конденсаторе. В результате происходит преобразование высокого напряжения в импульсное с частотой 10,0…100,0 килогерц;

Обратите внимание! Такое устройство высоковольтного блока позволило отказаться от низкочастотных массивных понижающих трансформаторов.

  • низковольтный. Здесь же происходит понижение импульсного напряжения не необходимого уровня. При этом напряжение сглаживается и стабилизируется.

В результате такого строения на выходе из блока питания импульсного типа функционирования наблюдается несколько или одно напряжение, которое нужно для питания бытовой техники.Стоит отметить низковольтный блок может содержать разнообразные управляющие схемы, повышающие надежность прибора.

Внешний вид основной платы блока питания

Импульсный блок питания (плата). Цвета приведены на схеме

Поскольку блоки питания такого типа имеют сложное устройство, их правильный ремонт, проводимый своими руками, должен опираться на некоторые знания в электронике.Осуществляя ремонт данного прибора, не стоит забывать, что некоторые его элементы могут находиться под сетевым напряжением. В связи с этим даже проводя первичный осмотр блока необходимо соблюдать предельную осторожность.Ремонт в большинстве случаев не будет вызывать осложнений, т.к. импульсные блоки питания имеют типовое устройство. Поэтому и неисправности у них тоже будут схожими, а ремонт своими руками выглядит вполне посильной задачей.

Возможные причины поломки

Неисправности, которые приводят импульсный блок питания в нерабочее состояние, могут появляться по самым разнообразным причинам. Наиболее часто поломки происходят из-за:

  • наличия колебания сетевого напряжения. К неисправности могут привести те колебания, на которые не рассчитаны данные понижающе-выпрямительные модули;
  • подключение к блоку питания нагрузок, на которые бытовые приборы не рассчитаны;
  • отсутствие защиты. Не устанавливая защиту, некоторые производители просто экономят. При обнаружении такой неполадки нужно просто установить защиту в конкретное место, где она и должна находиться;
  • несоблюдение правил и рекомендаций эксплуатации, которые указаны производителями для конкретных моделей.

При этом в последнее время частой причиной поломки преобразователей напряжения является заводской брак или использование при сборке некачественных деталей. Поэтому, если вы хотите, чтобы ваш купленный импульсный блок питания проработал как можно дольше, не стоит покупать его в сомнительных местах и не у проверенных людей. Иначе это могут быть просто впустую потраченные деньги.После диагностики блока зачастую выясняются следующие неисправности:

  • 40% случаев – нарушение работы высоковольтной части. Об этом свидетельствует перегорание диодного моста, а также поломка фильтрующего конденсатора;
  • 30% — пробоем биполярного (формирующего импульсы высокой частоты и располагающегося в высоковольтной части устройства) или силового полевого транзистора;
  • 15% — пробой диодного моста в его низковольтной части;

Внешний вид диодного моста

Диодный мост

  • редко встречается выгорание (пробой) обмоток дросселя на выходном фильтре.

Все остальные поломки можно будет определить только специальным оборудованием, которое вряд ли хранится дома у среднестатистического человека. Для более глубокой и точной проверки необходим цифровой вольтметр и осциллограф. Поэтому если поломки не кроются в четырех приведенных выше вариантах, то в домашних условиях блок питания такого типа вы не сможете починить.Как видим, ремонт, проводимый в данной ситуации своими руками, может иметь самый разнообразный вид. Поэтому, если у вас перестал работать компьютер или телевизор по причине поломки блока питания, то не нужно бежать в ремонтную службы, а можно попутаться решить проблему своими силами. При этом домашний ремонт обойдется значительно в меньшую стоимость. А вот если вы не сможете своими силами справиться с поставленной задачей, тогда можно уже идти на поклон к специалистам из ремонтной службы.

Алгоритм определения поломки

Любой ремонт всегда начинается с выяснения причины неисправности блока питания импульсного.

Обратите внимание! Для ремонта и поиска неисправностей импульсного блока питания вам потребуется вольтметр.

Необходимый инструмент для диагностики и ремонта

Вольтметр

 

Для того чтобы ее выявить, необходимо придерживаться следующего алгоритма:

  • разбираем блок питания;
  • с помощью вольтметра измеряем напряжение, которое имеется на электролитическом конденсаторе;

Измеряем напряжение на конденсаторе

Измерение напряжение на электролитическом конденсаторе

  • если вольтметр выдает напряжение в 300 В, то это означает, что предохранитель и все элементы электросети (кабель питания, сетевой фильтр входные дроссели), связанные с ним работают нормально;
  • в моделях с двумя конденсаторами небольших размеров напряжение, свидетельствующее об их исправности, которое выдает вольтметр, должно составить 150 В для каждого прибора;
  • если же напряжение отсутствует, тогда необходимо провести прозвонку диодов выпрямительного моста, предохранителя и конденсатора;

Обратите внимание! Самыми коварными элементами в электросхеме блока питания импульсного типа работы являются предохранители. Об их поломке не свидетельствуют никакие внешние признаки. Только прозвонка поможет вам выявить их неисправность. В случае сгорания они выдадут высокое сопротивление.

Внешний вид предохранителей блока питания

Предохранители импульсного блока питания

  • если была обнаружена неисправность предохранителей, то нужно проверять остальные элементы электросхемы, так как они редко когда сгорают в одиночку;
  • внешне достаточно легко выявить испорченный конденсатор. Обычно он вздувается или разрушается. Ремонт в данном случае будет заключаться в его выпаивании и замене на работоспособный.
  • Обязательно необходимо прозвонить на предмет исправности следующие элементы:
  • выпрямительный или силовой мост. Он имеет вид монолитного блока или организован из четырёх диодов;

Внешний вид силового моста

Силовой мост импульсного БП

  • конденсатор фильтра. Может выглядеть как один или несколько блоков, которые соединяются между собой последовательно или параллельно. Обычно конденсатор фильтра расположен высоковольтной части блока;
  • транзисторы, размещенные на радиаторе.

Обратите внимания! Проводя ремонт, нужно найти сразу все неисправные детали импульсного блока питания, так как их выпаивание и замену следует проводить одновременно! В противном случае замена одного элемента будет приводить к выгоранию силовой части.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

 

Процесс припайки элементов к плате

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс.Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Внешний вид платы импульсного блока питания

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена элемента на плате

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

Заключение

Ремонт блока питания, работающего по импульсному принципу, можно вполне реализовать своими руками. Но для этого нужно правильно провести диагностику прибора, а также одновременно заменить все сгоревшие детали электросхемы. Выполняя все рекомендации, вы легко сможете провести необходимые ремонтные действия у себя дома.

openstroi.ru

Импульсные блоки питания — устройство, применение, неисправности и ремонт

ПРИНЦИП РАБОТЫ - ПРИМЕНЕНИЕ - НЕИСПРАВНОСТИ И РЕМОНТ

Среди всех блоков питания можно выделить два основных типа:

Импульсные блоки питания

  • линейные;
  • импульсные (инверторные) источники.

В подавляющем большинстве случаев линейный источник питания состоит из трансформатора, преобразующего переменное напряжение, силового выпрямителя, сглаживающего фильтра и стабилизатора. Линейные блоки питания наиболее просты в схемотехническом плане и имеют низкий уровень помех.

Самый крупный недостаток — большие габариты и вес понижающего трансформатора и низкий КПД, особенно в случае большой нестабильности входного напряжения. Массивный силовой трансформатор с большой тепловой инерционностью затрудняет даже принудительное охлаждение при больших нагрузках.

Основные отличия импульсных стабилизаторов.

Импульсные источники питания тоже имеют в составе понижающий трансформатор. Только в данном случае он работает на высокой частоте и имеет несравненно меньшие габариты и массу. Малые габариты элементов облегчают отвод тепла пассивными (применение радиаторов) и активными (вентиляторы) методами.

При фильтрации и стабилизации высокочастотного напряжения с выхода импульсного трансформатора упрощается построение выходных фильтров, поскольку для фильтрации пульсаций напряжения высокой частоты нужна меньшая емкость конденсаторов. Инверторным блокам питания присущи несколько существенных недостатков — сложное устройство, высокий уровень электромагнитных помех и, в некоторых случаях, гальваническая связь выходных и входных цепей.

Впрочем, отработанная схемотехника подобных устройств в настоящее время уже не считается сложной, а помехи снижаются путем грамотного расчета узлов и дополнительной экранировкой.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Импульсный блок питания состоит из следующих элементов:

  • входной выпрямитель;
  • блок конденсаторов;
  • схема управления;
  • выходные ключи;
  • импульсный трансформатор;
  • вторичные (выходные) стабилизаторы и фильтры.

За счет того, что входное напряжение сначала преобразуется в постоянное, а затем обратно в переменное, точнее, в импульсы высокой частоты, импульсный высокочастотный трансформатор имеет очень малые габариты. Трансформатор преобразует высокочастотное переменное напряжение, поступающее от мощных транзисторных выходных ключей, которые, в свою очередь управляются широтно-импульсным (ШИМ) контроллером.

Такое название схема управления получила из-за того, что изменяя частоту и ширину (длительность) импульсов, можно регулировать время открытия ключевых транзисторов, изменяя, таким образом, значение выходного напряжения.

На ШИМ - контроллер (обычно это одна специализированная микросхема), поступает напряжение обратной связи с выхода блока питания или иные управляющие сигналы. Таким образом можно получить любые алгоритмы стабилизации выходного напряжения.

Стоит отметить, что наибольшей сложностью обладают устройства, которые предназначены для формирования нескольких значений напряжения на выходе с высокими требованиями к стабильности каждого из них. Как пример можно назвать блоки питания персональных компьютеров, телевизоров и других сложных устройств.

Такие блоки питания, как зарядные устройства для мобильных телефонов или иных маломощных гаджетов содержат малогабаритные специализированные микросхемы, в которых уже интегрированы все необходимые элементы. Такие блоки содержат минимум деталей и ремонтируются только энтузиастами, поскольку стоимость отдельных элементов порой сравнима со стоимостью нового зарядного устройства.

Часто производители бытовой техники вообще не предусматривают ремонт, выполняя корпус устройства неразборным или заливая печатную плату вместе с элементами специальным компаундом.

Высокий уровень помех импульсных устройств обусловлен тем, что управляющие импульсы высокой частоты имеют практически прямоугольную форму и поэтому имеют высокий уровень гармонических составляющих в большом диапазоне частот. Мощные транзисторы в момент переключения также становятся сильными источниками электромагнитного излучения. Для снижения помех схемы обычно дополняются помехоподавляющими цепями и заключаются в экранирующий корпус.

Малые габариты устройства и наличие схемы управления позволяют дополнить схемотехнику самыми различными схемами контроля как входного, так и любых выходных цепей, включая программное управление характеристиками.

В начало

ОБЛАСТИ ПРИМЕНЕНИЯ

Импульсные блоки питания в настоящее время используются в подавляющем большинстве устройств мощностью от долей ватта до единиц киловатт. Верхний предел ограничен параметрами выпускаемых на текущий момент транзисторов. Это ограничение можно обойти довольно просто, соединяя несколько идентичных маломощных блоков питания параллельно.

Для одинаковой и равномерной нагрузки отдельных составляющих, они объединяются по сигналам обратной связи. Постоянное совершенствование технологии разработки и конструирования полупроводниковых приборов, создание новых классов транзисторов (IGBT, MOSFET) стимулирует создание все более мощных импульсных устройств.

Даже большое число параллельно включенных устройств по массе и габаритам значительно меньше аналогичного по мощности понижающего трансформатора стандартной частоты 50 Гц, поэтому очень часто делают некоторый избыток блоков для того, чтобы при выходе одного из них он автоматически выключался и работа устройств не нарушалась.

Сам принцип работы обеспечивает широкий диапазон допустимого входного напряжения. Например импульсные блоки питания бытовых устройств при нормальном напряжении сети 220 В, способны работать вплоть до диапазона 80 — 250 В, то есть при таких напряжениях, когда обычный линейный стабилизатор выходит из границ стабильной работы.

В начало

ТИПОВЫЕ НЕИСПРАВНОСТИ И РЕМОНТ

Как ни странно будет звучать, но импульсным блокам питания гораздо страшнее низкое входное напряжения, чем высокое. Верхний предел обычно ограничен номинальным напряжением электролитических конденсаторов фильтра и допустимым обратным напряжением выпрямительных диодов.

Длительная работа при пониженном входном напряжении вызывает перегрев и тепловой пробой ключевых транзисторов, поскольку, чем ниже напряжение на входе, тем больше время открытия ключей для получения нужного напряжения на выходе трансформатора.

Многие импульсные блоки питания нестабильно работают, когда нагрузка выхода имеет малое значение или вообще отсутствует. Отсутствие обратной связи на входе ШИМ контроллера приводит к тому, что транзисторные ключи полностью открываются и блок выходит из строя буквально через несколько минут. Соответствующие схемные решения позволяют избавиться от такого недостатка.

Наиболее часто неисправности импульсных блоков питания вызываются:

  • выходом из строя диодов выпрямительного моста;
  • электролитических конденсаторов сглаживающего фильтра;
  • ключевых транзисторов.

Такое обычно происходит в случае сильно завышенного входного напряжения или длительной работы при пониженном. В подавляющем большинстве случаев даже нет необходимости в измерительных приборах — повреждения видны невооруженным глазом по разрушенным и вздувшимся элементам.

Гораздо реже выходят из строя элементы управляющей схемы (ШИМ-контроллера) и обратной связи. В данном случае без измерений не обойтись.

Крайне редки случаи повреждения импульсного трансформатора. Обычно их габариты позволяют выполнять сборку с большими запасами по току и мощности. Поэтому неисправности случаются только при некачественном выполнении.

Практика ремонтов показывает, что львиная доля неисправностей происходит по причине крайне низкого качества некоторых типов электролитических конденсаторов. Падение емкости или большое внутреннее сопротивление конденсаторов выходных цепей может приводить к неправильной работе обратной связи, в результате чего выходное напряжение перестает соответствовать норме.

В некоторых случаях конденсаторы могут вызывать срабатывание защиты. Внешне неисправные конденсаторы могут иметь вздутие на торцах корпуса. Такие элементы следует менять на исправные, не тратя время на их проверку.

Обычно ремонт серьезных импульсных блоков питания требует несколько большей квалификации специалистов, чем ремонт традиционных схем и требует таких измерительных приборов, как осциллограф.

Внимание!

Часть элементов схемы блока питания находится под напряжением сети. Это выпрямительные диоды, конденсаторы, ключевые транзисторы и первичная обмотка импульсного трансформатора.

Ремонт таких устройств можно выполнять только при отключенном блоке с разряженными конденсаторами фильтра. В крайнем случае можно производить некоторые работы и под напряжением, но только с обязательной гальванической развязкой блока от питающей сети через разделительный трансформатор.

Для исключения попадания электромагнитных помех в питающую сеть, на входе блока обычно ставят помехоподавляющий фильтр, элементы которого соединены непосредственно с экранирующим кожухом. Таким образом, кожух оказывается гальванически связан с проводами питающей сети.

При прикосновении к корпусу прибора можно получить удар электрическим током, опасным для жизни. Для обеспечения безопасности, все импульсные блоки питания должны быть в обязательном порядке заземлены или иметь корпус из изоляционного материала.

Современное бытовое оборудование и часть промышленного позволяют производить заземление непосредственно через шнур питания. Для этого в паре розетка — вилка предусмотрены отдельные контакты для подключения заземления.

В начало

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

Поиск неисправностей в импульсных блоках питания

Поиск неисправностей в импульсных блоках питания

Помните, что при ремонте блока питания следует пользоваться развязывающим трансформатором.За основу для приведения конкретных примеров, взят наиболее массовый источник питания

Посмотрим на рис.1, на котором представлена типичная схема блока питания современного ТВ. Для простоты блок питания STAND BY не показан. Все многообразие неисправностей блоков питания сводится чаще всего к следующим дефектам: 1. Блок питания не работает, предохранители остаются целыми. 2. При включении телевизора перегорает либо сетевой предохранитель,либо предохранитель в цепи напряжения +305 V (если он есть), 3. Неисправности, проявляющиеся в занижении или завышении вторичных напряжений, причем, если первая из них связана, как правило, с короткими замыканиями в цепи нагрузки одного или нескольких вторичных напряжений, то вторая является следствием обрыва в цепи обратной связи. Обе эти неисправности в современных блоках питания, как правило, приводят к срабатыванию схем блокировки и отключению аппарата.

Итак, если блок питания не работает, а все предохранители целы, лучше всего начинать поиск неисправностей с проверки напряжения на выходе сетевого выпрямителя. Это напряжение должно составлять около +280 - 305 V, при питающем напряжении сети переменного тока равном 220 В. Кроме того, проверьте с помощью осциллографа амплитуду пульсаций этого напряжения. Если напряжение существенно ниже +305 V или вовсе отсутствует, проверьте выпрямитель сетевого напряжения. Повышенная амплитуда пульсаций указывает на неисправность основного фильтрующего конденсатора С810 (330 mF 400V) либо на обрыв диодного выпрямителя.

Если напряжение +305 V находится в пределах нормы (от 280 до 320 В), то можно приступать к тестированию ИБП. Сначала необходимо выяснить, не происходит ли блокировка блока питания сразу после включения, либо он вовсе не пытается запуститься. Это можно проверить, присоединив вход осциллографа к тому выводу мощного переключающего транзистора, который присоединен к первичной обмотке трансформатора, коллектор транзистора Q802 (2SD 1548). А землю осциллографа присоедините к “горячей земле” блока питания. Теперь включайте главный сетевой выключатель телевизора и смотрите что произойдет. Полученные данные очень помогут в поиске неисправности.

И так, если после включения телевизора здесь появится на короткое время серия импульсов, то это говорит о том, что блок питания пытается запуститься, но сразу после запуска выключается какой-либо схемой блокировки (их может быть несколько). Типичной является ситуация когда, срабатывает защита от превышения предельного значения анодного напряжения на кинескопе. Поскольку эта неисправность непосредственно связана с работой выходного каскада строчной развертки. Однако при ремонте блока питания может возникнуть необходимость убедиться в наличии или в отсутствии срабатывания этой блокировки. Убедиться в этом, а также в том, что является причиной неправильной работы блока питания. Неисправность в основном потребителе энергии, выходном каскаде строчной развертки, можно следующим способом. Необходимо, во-первых, разорвать цепь подачи питания на первичную обмотку строчного трансформатора. В рассматриваемом примере это цепь +B 115 V И, во-вторых, нагрузить источник вторичного напряжения 115V блока питания резистором 500-750 Ом мощностью 50 Вт (или, что еще удобнее, лампой накаливания 200V 100 Вт). Если при этом блок питания заработает нормально, значит, поиск неисправности следует продолжить в выходном каскаде строчной развертки, а также в схемах блокировки и защиты от недопустимых режимов.

Теперь рассмотрим ситуацию, когда после включения телевизора блок питания не пытается запуститься и вообще не подает признаков жизни.

Сначала следует, обязательно убедившись в том, что блок питания не работает, измерить постоянное напряжение на коллекторе мощного переключающего транзистора (в данной схеме Q802 2SD1548). Если на коллекторе Q802 напряжения 305V нет, а на С810 (конденсаторе фильтра сетевого выпрямителя) есть, то, скорее всего, оборвана первичная обмотка импульсного трансформатора (в данной схеме обмотка 6—3 трансформатора T803). Перед заменой трансформатора необходимо выяснить, не было ли причиной этого обрыва короткое замыкание в цепи первичной обмотки, например, пробой транзистора Q802.

Если трансформатор и мощный переключательный транзистор исправны, и на коллекторе этого транзистора имеется напряжение около +300 V, но блок питания не работает, проверьте, подается ли запускающее напряжение на задающий генератор. Задающий генератор рассматриваемого нами блока питания содержится в микросхеме IC801 (TDA 4601), а элементами цепи запуска являются D805, R818 соответственно (BYD33J) (20K). Блокировка задающего генератора, возникает в некоторых схемах, при отсутствии или чрезмерных пульсациях напряжения питания ждущего режима USTAND BY, вырабатываемого отдельным блоком. В данной схеме такая ситуация возникнуть не может, поскольку основной блок питания блокируется сигналом STAND BY высокого уровня +5V однако возможны такие неисправности цепей ждущего режима, приводящие к выключению блока питания, как обрыв нагрузочного резистора R838 или неисправность ключевого транзистора Q804 (BC 547A). Исправность транзистора Q804 можно проверить путем замыкания его базы на “холодный” общий провод. Если при этом блок питания запустится, значит, неисправность в блоке управления (постоянно держится сигнал STAND BY). Если блок питания таким образом запустить не удается, и напряжение на 9 выводе IC801 всегда остается меньше + 5V, то неисправными могут оказаться либо оптрон ждущего режима DR01 (CNY75C), либо транзистор Q804 (BC 547A). Если эти элементы исправны, но блок питания, тем не менее, не запускается, придется заменить микросхему контроллера ШИМ IC801.

Теперь рассмотрим такую часто встречающуюся неисправность, как перегорание предохранителя в цепи напряжения +305 V R801 (6,2 Om) или сетевого предохранителя при включении телевизора. В этом случае в первую очередь следует проверить исправность мощного переключательного транзистора (в данной схеме Q802). В этом случае с помощью омметра проверяется наличие пробоя переходов база-эмиттер и база-коллектор, а также короткого замыкания между коллектором и эмиттером. В исправном биполярном транзисторе переходы должны вести себя как диоды.

Следует знать, что пробой мощного переключательного транзистора не обязательно бывает самопроизвольным, а часто вызывается неисправностью какого-либо другого элемента. В частности, в рассматриваемой схеме это может быть обрыв одного из элементов демпфирующей цепи C816,C818, R821, D808, L803, короткозамкнутый виток в первичной обмотке трансформатора T803, а также неисправность микросхемы IC801. Поэтому перед установкой исправного транзистора на место желательно проанализировать возможные причины его выхода из строя и провести необходимые проверки, иначе для устранения неисправности придется запастись большим количеством дорогостоящих, мощных транзисторов.

Например, неисправность IC801, приводящую к пробою мощного переключательного транзистора, можно установить, если включить блок питания без Q802. Выходных напряжений при таком включении, конечно, не будет. Но с помощью осциллографа можно проверить наличие импульсов на 8 выводе микросхемы ШИМ IC801, подаваемых на базу Q802 (напоминаем, что “земля” осциллографа должна быть присоединена в этом случае к “горячему” общему проводу блока питания!). И если импульсов нет. А есть постоянное, положительное напряжение, то IC801 придется заменить.

Основные цепи однотактного блока питания

Подводя итог вышесказанному, следует отметить, что методика поиска неисправностей в импульсных блоках питания имеет одну отличительную особенность. А именно, замена сгоревших резисторов, пробитых диодов и неисправных транзисторов не гарантирует успешного выполнения ремонта, поскольку после включения эти замененные элементы могут отказать вновь.

Пожалуй, наибольшие трудности при ремонте импульсных блоков питания, обусловлены, их способностью предохранять себя от перегрузок по напряжению и току посредством выключения. Большинство отказов элементов или изменений нагрузки приводят к полному отключению блока, давая один и тот же симптом “мертвого шасси”. Казалось бы, в этом случае остается только гадать; вызвана ли блокировка наличием слишком большого напряжения? Или выпрямленное сетевое напряжение слишком мало? Или слишком велик ток нагрузки? Или отказал какой-либо элемент в блоке питания или в предохранительных цепях? При отсутствии последовательной логической процедуры поиск неисправности в импульсном блоке питания может быть безуспешным Тем не менее, есть возможность исключить цепи блокировки и тем самым ограничить область поиска неисправности, выполнив шесть несложных проверок. Вспомним сначала, какие основные цепи присутствуют практически во всех импульсных блоках питания. Для этого обратимся к блок-схеме на рис.2

Цепь 1: Выпрямленное сетевое напряжение (около +305 V). Эта цепь содержит линейный первичный источник питания (обычно диодный мост и фильтрующий конденсатор), блок питания ждущего режима, первичную обмотку импульсного трансформатора и связанные с ней цепи, а также мощный переключательный транзистор.

Цепь 2: Генератор импульсов и цепи запуска. Эта цепь вырабатывает управляющий сигнал для переключательного транзистора. Она может быть выполнена как в виде одного транзисторного каскада, так и специализированной интегральной микросхемы контроллера ШИМ.

Цепь 3: Вторичные цепи. Вторичные цепи содержат вторичные обмотки импульсного трансформатора и компоненты (диоды, конденсаторы и т.д.), которые обеспечивают подачу энергии в нагрузки. Большинство ИБП имеют от двух до пяти нагрузок.

Цепь 4: Обратная связь и управление. Цепи обратной связи выполняют четыре функции: - стабилизацию выходных напряжений, - контроль над высоким напряжением; - передачу на ИБП сигналов включено - выключено от блока управления телевизора, - гальваническую развязку вторичных цепей от сетевого напряжения.

Далее предлагается процедура, которая после выполнения шести определенных шагов позволяет эффективно локализовать неисправность, возникшую в каждой перечисленных выше основных цепей. При поиске неисправностей в импульсных блоках питания придерживайтесь следующих правил:

— помните, что неправильный выбор общего провода при измерениях не только даст неправильные результаты, но и может привести к выходу из строя некоторых компонентов. — “горячий” общий провод связан с первичными цепями импульсного трансформатора и используется при измерениях в цепи 1, — “холодный” общий провод связан с вторичными цепями импульсного трансформатора и используется при измерениях в цепях 2, 3 и 4; — при измерениях на входе оптопары (от цепей управления) используется “холодный” общий провод, — при измерениях на выходе оптопары (на цепи задающего генератора или контроллера ШИМ) используется “горячий” общий провод; — будьте готовы к выполнению всех необходимых измерений. Эффективный поиск неисправностей зависит от вашей способности быстро выполнить измерения постоянных напряжений от десятых долей до 350V и различных сигналов с размахом от 2 до 800 Вис частотой от 40 до 150 Кгц,

Итак, первым шагом должна быть

Шаг 1. Проверка напряжения питания ждущего режима (STAND ВТ)

Измеряйте это напряжение на шасси, подключенном к сети через изолирующий трансформатор. Напряжение STAND BY должно иметь правильное значение. Независимо от того, работает ли блок питания, или нет (не все импульсные блоки питания снабжены отдельным источником питания STAND BY, некоторые шасси имеют для ждущего режима второй импульсный блок питания меньшего размера, в котором в качестве драйвера используется часто та же самая микросхема, что и в основном блоке питания).

Нормально работающий источник питания STAND BY отводит подозрения от многих компонентов. Например, в этом случае можно с большой вероятностью утверждать, что микросхема драйвера и контроллера ШИМ исправна, а причина, по которой она не выдает открывающие импульсы на выходной транзистор, состоит в том, что она заблокирована каким-либо внешним сигналом.

Итак, если напряжение STAND BY нормальное, а блок питания не подает признаков жизни, переходим к шагу 2.

Шаг 2. Замена основной нагрузки

Важным шагом при ремонте ИБП является отключение выхода блока питания от цепей-потребителей вторичных, напряжений. Это поможет выяснить, выключается ли блок питания из-за внутренней неисправности, или это происходит под влиянием какой-либо внешней причины. Внешние блокирующие сигналы появляются при коротких замыканиях в нагрузках, и при срабатывании цепей защиты от перенапряжения, при неправильной работе выходных каскадов строчной и кадровой разверток, а также при неисправностях самих цепей блокировки.

Большинство ИБП не могут работать без надлежащей нагрузки, поэтому просто отсоединить все потребители энергии нельзя. Вместо отсоединенных нагрузок необходимо подключить резистивный эквивалент (хотя бы один вместо всех), Подходящим эквивалентом нагрузки является лампа накаливания, которая ограничивает до безопасного уровня потребляемый по данной вторичной цепи ток и наглядно демонстрирует наличие в этой цепи напряжения. Мощность и рабочее напряжение лампы нагрузки, соответствует эквиваленту нагрузки. Например, если в цепь питания выходного каскада строчной развертки подается вторичное напряжение +115 V, то в качестве эквивалента подходит стандартная лампа 100 Вт 220 V, а цепь 15 V следует нагружать на 18-вольтовую лампу мощностью 10 Вт.

Вы должны разорвать цепь питания выходного каскада строчной развертки, чтобы удалить нормальную нагрузку. Убедитесь, что разрыв цепи сделан таким образом, чтобы делитель напряжения цепи обратной связи остался присоединенным к шине питания, как это показано на рис. 3

Удаление выходного строчного транзистора разрывает цепь питания, однако не пытайтесь подключить лампу-эквивалент вместо удаленного транзистора! Первичная обмотка строчного трансформатора не рассчитана на пропускание постоянного тока, поэтому присоединяйте лампу так, как это показано на рис.3.

Когда после замены реальной нагрузки эквивалентом вы включите блок питания, возможна одна из четырех перечисленных ниже ситуаций.

-Лампа светится. Это показывает нормальную работу ИБП. Неисправность, по причине которой ИБП блокируется, находится во внешних цепях. Это может быть короткое замыкание, слишком высокое напряжение на кинескопе или неисправность цепей блокировки и защиты. -Лампа не светится, (блок питания не запускается). -Лампа вспыхивает, но сразу гаснет, (блок питания запускается, но сразу блокируется), -Лампа светится слишком ярко (отсутствует стабилизация выходного напряжения).

Последние три ситуации показывают, что неисправность необходимо искать в самом блоке питания, для чего выполняем шаг 3.

Шаг 3. Отключение сигнала управления от мощного транзистора

Разорвите цепь подачи сигнала управления на базу мощного переключательного транзистора. Для этого достаточно отпаять какой-либо элемент, включенный последовательно в эту цепь. Это позволит вам искать неисправность в блоке питания, включенном в сеть, без риска получить какую-либо перегрузку, поскольку никаких выходных напряжений в этом случае производиться не будет. Например, можно будет перейти к шагу 4.

Шаг 4. Проверка цепи 1

Цепь I включает в себя элементы, пропускающие ток от выхода линейного источника питания — шины выпрямленного сетевого напряжения +305 V - эмиттера переключающего транзистора Проверку цепи 1 удобно проводить с использованием регулируемого автотрансформатора и осциллографа, настроенного на измерение постоянного напряжения. Присоедините вход осциллографа к коллектору, переключательного транзистора и постепенно увеличивайте переменное напряжение, подаваемое на вход ИБП, от нуля до номинального значения 220 В. При этом может наблюдаться низкий ток потребления, нормальное напряжение (около +305V при сетевом напряжении 220 В). Это показывает, что источник выпрямленного сетевого напряжения исправен, однако с элементами цепи 1 возможны проблемы. Начинайте с проверки мощного переключающего транзистора. Проверьте также резисторы и если вы полагаете, что резисторы изменили свое сопротивление, замените их заведомо исправными.

Выпрямленное напряжение и ток, потребляемый от сети 220V равны нулю. Такая ситуация возникает при обрыве в цепи +305 V. Проверьте предохранители, защитные резисторы, диоды выпрямительного моста и первичную обмотку импульсного трансформатора. Перед заменой исправных элементов, выясните, не была ли причиной их обрыва токовая перегрузка, например, вследствие пробоя переключательного транзистора или какого-либо другого элемента.

Выпрямленное напряжение равно нулю или мало при повышенном токе потребления от сети 220 В. Такие симптомы возникают при коротком замыкании в цепи 1 либо в самом источнике выпрямленного сетевого напряжения. Проверьте, не пробит ли переключающий транзистор, диоды выпрямителя, конденсатор фильтра. Проверьте также импульсный трансформатор на короткозамкнутые витки и на замыкание между обмотками.

Если короткое замыкание в цепи 1 не обнаружено, переходим к шагу 5.

Шаг 5. Проверка цепей задающего генератора

Во-первых, убедитесь, что на микросхему задающего генератора поступает запускающее напряжение. В большинстве ИБП запускающее напряжение формируется резистивным делителем. Включенным в цепь выпрямленного сетевого напряжения +305 V. Проверка запускающего напряжения, должна быть обязательно проведена до проверки задающего генератора поскольку присоединение пробника осциллографа к контрольной точке выхода задающего генератора может послужить толчком к его запуску. Блок питания в этом случае заработает, а после выключения и последующего включения вновь не запустится, и причина его неисправности останется невыясненной.

Во-вторых, тщательно проверьте с помощью осциллографа все параметры выходного сигнала задающего генератора: размах, частоту, уровень постоянной составляющей. Вход осциллографа должен быть присоединен к специальной контрольной точке выхода задающего генератора, а не к тому выходу, который управляет переключательным транзистором. Управляющий сигнал на переключательный транзистор может не поступать, если микросхема контроллера блокирована каким-либо внешним сигналом. Если частота сигнала более чем на 10% выше номинальной, или если на осциллограмме наблюдаются шумовые всплески и регулярные выбросы, то микросхему задающего генератора придется заменить.

Проверив исправность микросхемы задающего генератора и контроллера ШИМ, переходим к шагу 6.

Шаг 6. Динамический контроль цепи 4

Эта процедура позволяет проверить, правильно ли работают элементы обратной связи и управления, входящие в цепь 4 блок-схемы (рис.2.) Неисправности в этой цепи часто вызываются отказами транзисторов, отключающими всю петлю обратной связи, Динамический контроль цепи 4 способствует эффективному и быстрому выявлению и устранению этих проблем.

Для выполнения этой проверки вам понадобится внешний регулируемый источник питания постоянного тока, способный выдавать напряжение, равное вторичному напряжению, поступающему для питания выходного каскада строчной развертки (в нашем примере +115 В). Выход этого источника подключается к шине вторичного напряжения так, как это показано на рис. 4, а затем с помощью измерительных приборов исследуется реакция элементов цепи 4 на изменения напряжения на шине +115. 1. Отсоедините эквивалент нагрузки (лампу накаливания) от шины +115 V. 2. Присоедините выход внешнего источника питания к тому месту, где был отсоединен эквивалент. 3.Присоедините вход осциллографа или вольтметра постоянного тока к управляющему входу контроллера ШИМ (выходу оптопары). 4. Установите напряжение сети 220V и включите телевизор. 5. Изменяйте напряжение внешнего источника питания от+100V до номинального значения +110V и далее до +115, наблюдая при этом изменение напряжения на выходе оптопары.

Если цепь обратной связи работает нормально, то увеличение напряжения внешнего источника сопровождается увеличением напряжения на выходе оптопары. Типичной является ситуация, когда на 1 вольт изменения напряжения +B приходится 0,1 V изменения напряжения на коллекторе фототранзистора оптопары. Если напряжение остается постоянным, то в первую очередь следует проверить: Исправность оптопары (помните при выполнении измерений о правильном выборе “горячего” и “холодного” общего провода!), В дальнейшем необходимо проверить остальные элементы цепи обратной связи и управления, включая те, которые передают сигналы вкл/выкл от микропроцессора и сигналы блокировки от различных устройств защиты. Часто отказывают электролитические конденсаторы, которые должны быть проверены на обрыв, утечку и потерю емкости.

В заключение следует отметить, что многие элементы в ИБП работают в условиях больших токов и напряжений на сравнительно высоких частотах, и поэтому их надежность имеет значение, для безопасной эксплуатации телеприемника. В связи с этим производите их замену при необходимости только на те элементы, которые

указаных в перечне элементов фирмы-производителя.

В статье нумерация элементов взята из принципиальной схемы телевизоров цветного изображения альбома №5 страница 104-105. А основная схема (рис. 1) взята из пособия по ремонту импульсных источников питания (Автор Ю.И. Фомичев “Источники питания с устройствами управления на ИМС”). Напряжение вторичного источника питания +B по принципиальной схеме равно 147V.

22 сентября 2001 года С.В. Давыдов

davsergej.narod.ru