Химические и физические свойства алюминия. Физические свойства гидроксида алюминия. Пластичность алюминия


44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы

44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы

Алюминий отличают низкая плотность, высокие тепло– и электропроводность, хорошая коррозийная стойкость во многих средах за счет образования на поверхности металла плотной оксидной пленки Аl203. Технический отожженный алюминий АДМ упрочняется холодной пластической деформацией.

Алюминий высокопластичен и легко обрабатывается давлением, однако при обработке резанием возникают осложнения, одной из причин которых является налипание металла на инструмент.

В зависимости от того, какие примеси присутствуют в алюминии, наблюдаются изменения его коррозионных, физических, механических и технологических свойств. Большинство примесей отрицательно сказываются на электропроводности алюминия. Наиболее распространенные примеси: железо, кремний. Железо, наряду с электропроводностью, снижает пластичность и коррозионную стойкость, повышает прочностные свойства алюминия. Присутствие железа в сплавах алюминия с кремнием и магнием отрицательно сказывается на свойствах сплава. Только в тех сплавах алюминия, где присутствует никель, железо считается полезной примесью.

Наиболее распространенная примесь в алюминиевых сплавах – кремний. Данный металл, а также медь, магний, цинк, марганец, никель и хром вводят в алюминиевые сплавы как основные компоненты. Соединения CuAl2, Mg2Si, CuMgAl2– эффективно упрочняют алюминиевые сплавы.

Основные легирующие элементы в алюминиевых сплавах. Марганец повышает коррозионную стойкость. Кремний является основным легирующим элементом в ряде литейных алюминиевых сплавов (силуминов), поскольку он участвует в образовании эвтектики.

Ni, Ti, Сг, Fе повышают жаропрочность сплавов, затормаживая процессы диффузии и образуя стабильные сложнолегированные упрочняющие фазы. Литий в сплавах способствует возрастанию их модуля упругости. Вместе с тем магний и марганец снижают тепло– и электропроводность алюминия, а железо – его коррозионную стойкость.

Маркировка алюминиевых сплавов. В настоящее время одновременно применяют две маркировки сплавов: старую буквенно-цифровую и новую цифровую. Наряду с этим имеется буквенно-цифровая маркировка технологической обработки полуфабрикатов и изделий, качественно отражающая механические, химические и другие свойства сплава.

Классификация алюминиевых сплавов. Алюминиевые сплавы в основном подразделяются на деформируемые и литейные, поскольку в производстве порошковых сплавов и композиционных материалов используются процессы пластической деформации и литья.

Алюминиевые сплавы разделяют по способности упрочняться термической обработкой на упрочняемые и не упрочняемые. Они могут подвергаться гомогенизационному, рекристализационному и разупрочняющему отжигу.

Хорошим сочетанием прочности и пластичности отличаются сплавы системы Аl—Сu—Мg – дюралюмины Д1, Д16, Д18, Д19 и др. Термическая обработка упрочняет дюралюмины, повышает их свариваемость точечной сваркой. Они удовлетворительно обрабатываются резанием, но имеют склонность к межкристаллитной коррозии после нагрева. Значительное повышение коррозионной стойкости сплавов достигается плакированием.

В авиации дюралюмины применяют для изготовления лопастей воздушных винтов (Д1), силовых элементов конструкций самолетов (Д16, Д19).

Высокопрочные сплавы системы Аl—Zn—Мg—Сu (В93, В95, В96Ц) характеризуются большими значениями временного сопротивления (до 700 МПа). При этом достаточная пластичность, трещиностойкость и сопротивление коррозии достигаются режимами коагуляционного ступенчатого старения (Т2, ТЗ), а также применением сплавов повышенной (В95кч) и особой (В95оч) чистоты.

Высокомодульный сплав 1420 обладает благодаря легированию алюминия литием и магнием (система Аl—М–Li) пониженной (на 11 %) плотностью и одновременно повышенным (на 4 %) модулем упругости.

Ковочные сплавы АК6 и АК8 (система Аl—М–Si—Cu) при горячей обработке давлением обладают высокой пластичностью. Они удовлетворительно свариваются, хорошо обрабатываются резанием, но под напряжением склонны к коррозии. Для обеспечения коррозионной стойкости детали из сплавов АК6 и АК8 анодируют или покрывают лакокрасочными материалами. Из ковочных сплавов изготавливают ковкой и штамповкой детали самолетов, работающие под нагрузкой. Эти сплавы способны работать при криогенных температурах.

Жаропрочные алюминиевые сплавы системы А1-Си-Мп (Д20, Д21) и Аl—Сu—Мg—Fе—Ni (АК4-1) применяют для изготовления деталей (поршни, головки цилиндров, диски), работающих при повышенных температурах (до 300 °C). Жаропрочность достигается за счет легирования сплавов никелем, железом и титаном, затормаживающими диффузионные процессы и образующими сложнолегированные мелкодисперсные упрочняющие фазы, устойчивые к коагуляции при нагреве. Сплавы обладают высокой пластичностью и технологичностью в горячем состоянии.

Литейные алюминиевые сплавы.

Основные требования к сплавам для фасонного литья – это сочетание хороших литейных свойств (высокой жидкотекучести, небольшой усадки, малой склонности к образованию горячих трещин и пористости) с оптимальными механическими и химическими (сопротивление коррозии) свойствами. Лучшими литейными свойствами обладают сплавы эвтектического состава.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Свойства алюминия – материала на все времена

Часто первые названия чего-либо – устройства, материала или изделия - наиболее точно и понятно отражают их сущность. А потом наступает период осмысления и приходит новое название, научное, в котором понятный “житейский” смысл уходит в небытие. Когда-то алюминий имел название глинозем, т.е. “глина земли”, а глина, как известно, первичная суть земли. Теперь так называют оксид алюминия. А на смену бытовавшему ранее названию “глинозем” пришло новое имя - “алюминиум” – красиво, загадочно и по-научному. Легенда о первом пришествии алюминия имеет печальный конец: мастеру, подарившему императору Тиберию удивительную чашу из доселе неизвестного металла, чтобы сохранить подарок в единственном экземпляре, на всякий случай, отрубили голову – нашел кому дарить. В те времена, в начале нашей эры, вопросы секретности решались кардинально, а благодарность за мастерство также была своеобразной. Как бы там ни было, но только через пятнадцать столетий Парацельс установил, что глинозем (квасцы), применяемый для закрепления красок в тканях и кожах, содержит окись неизвестного металла.

Чистый металл удалось получить только в 1825 г. Датский ученый Эрстед в качестве побочного эффекта своих исследований получил «кусок металла, похожий на олово», но продолжать работы не стал. Тем не менее, к середине XIX века алюминий - серебристый, легкий, простой в обработке металл - ценился больше золота. Свойства алюминия в первую очередь оценили ювелиры. На него была мода, а на выставке в Париже в 1855 году изделия из алюминия демонстрировались рядом с бриллиантами французской короны. Как известно, спрос приводит к росту предложений, поэтому технологии производства получили толчок к развитию. И к середине ХХ века алюминий стал обычным широко применяемым в технике материалом, а физические свойства алюминия были уже достаточно хорошо изучены.

Технологии промышленного производства алюминия

Основой производства алюминия является электролиз, а сырьем служит растворенный в расплаве криолита оксид алюминия Al2O3. Для электролиза применяют ванны, рабочая температура которых чуть меньше 1000°С. Жидкий алюминий собирается на дне ванны - это катод установки. Разливают его в формы и получают слитки или чушки - сырье для дальнейшей переработки.

Свойства алюминия изменяют в нужном ключе при помощи легирующих добавок. При этом добиваются повышения прочности, твердости, жаропрочности и т.д. с ориентацией на конкретное применение. Легирующие материалы для различных сплавов - медь, марганец, цинк, магний, а также (в небольших количествах) кремний, железо, никель и др. добавляют в расплав при окончательном изготовлении нужного вида готовой продукции.

Основные физические свойства алюминия

Любой материал характеризуется набором физико-химических свойств, которые и определяет его последующее использование. Свойства алюминия — пластичность, небольшой удельный вес, хорошая тепло- и электропроводность — известны всем.

С точки зрения применения в электротехнике безусловный интерес представляют магнитные свойства алюминия, по которым он относится к слабомагнитным веществам группы парамагнетиков. Этот класс материалов характерен тем, что его магнитное поле при действии внешнего поля совпадает с ним по направлению, и, хоть и очень незначительно, но усиливается.

Применение алюминия

Ценность материала определяет востребованность изделий из него. Алюминий востребован в первую очередь как конструкционный материал. Легкость обработки и коррозионная стойкость позволяют использовать изделия из алюминия в строительстве, машиностроении, для изготовления теплового, пищевого и других видов оборудования. Алюминий – это основной конструкционный материал авиации. Все более широкое применение находят алюминиевые сплавы в судостроении - корпуса судов, коммуникации, палубные надстройки, различное судовое оборудование. Широко применяются в промышленности и быту дюралюминий и силумин - некорродирующие сплавы алюминия с медью – до 7% или кремнием – до 14%.

Электропроводность алюминия незначительно уступает меди, но алюминий намного легче и дешевле, чем и обусловлено его широкое применение в электротехнике. При этом основные свойства алюминия для такого применения – малое электрическое сопротивление, вес и невысокая стоимость. Все чаще в электрооборудовании, где совсем недавно безраздельно господствовали исключительно медные проводники, применяют алюминиевые обмотки трансформаторов, катушек индуктивности, реакторов, “жилы” кабелей и др. Магистральные линии электропередач также во многом обязаны именно алюминию.

Нет сомнений, что этот удивительный металл еще не раскрыл всех своих возможностей – это предстоит сделать в будущем.

fb.ru

СВОЙСТВА АЛЮМИНИЕВЫХ СПЛАВОВ

       

АЛЮМИНИЕВЫЕ СПЛАВЫ     

Содержание

- классификация сплавов

- физические свойства

- коррозионные свойства

- механические свойства

- круглый и профильный алюминиевый прокат

- плоский алюминиевый прокат

- интересные интернет-ссылки

          Классификация алюминиевых сплавов.

        Алюминиевые сплавы условно делятся на литейные (для производства отливок) и деформируемые (для производства проката и поковок). Далее будут рассматриваться только деформируемые сплавы и прокат на их основе. Под алюминиевым прокатом подразумевают прокат из алюминиевых сплавов и технического алюминия (А8 – А5, АД0, АД1).  Химический состав деформируемых сплавов общего применения приведен в ГОСТ 4784-97 и ГОСТ 1131.

     Деформируемые сплавы разделяют по способу упрочнения: упрочняемые давлением (деформацией) и термоупрочняемые.

     Другая классификация основана на ключевых  свойствах: сплавы низкой, средней или высокой прочности, повышенной пластичности, жаропрочные, ковочные и т.д.

     В таблице систематизированы наиболее распространенные деформируемые сплавы с краткой характеристикой основных свойств присущих для каждой системы. Маркировка дана по ГОСТ 4784-97 и международной классификации ИСО 209-1.

 
Характеристика сплавовМаркировкаСистема легированияПримечания

СПЛАВЫ УПРОЧНЯЕМЫЕ ДАВЛЕНИЕМ (ТЕРМОНЕУПРОЧНЯЕМЫЕ)

Сплавы низкой прочности

 и высокой пластичности,

 свариваемые, коррозионносойкие

АД0

1050А

Техн. алюминий без легирования

Также АД, А5, А6, А7

АД1

1230

АМц

3003

 

Al – Mn

Также

ММ (3005)

Д12

3004

Сплавы средней прочности

 и высокой пластичности,

 свариваемые, коррозионносойкие

АМг2

5251

 Al – Mg

(Магналии)

Также АМг0.5, АМг1, АМг1.5АМг2.5

АМг4 и т.д.

АМг3

5754

АМг5

5056

АМг6

-

ТЕРМОУПРОЧНЯЕМЫЕ  СПЛАВЫ

Сплавы средней прочности и высокой пластичности

свариваемые

АД31

6063

 Al-Mg-Si

(Авиали)

 

Также

АВ (6151)

АД33

6061

АД35

6082

 Сплавы нормальной прочностиД1

2017

 Al-Cu-Mg

(Дюрали)

 Также В65,

 Д19, ВАД1

Д16

2024

Д18

2117

Свариваемые сплавы нормальной прочности1915

7005

 

Al-Zn-Mg

 
1925

-

Высокопрочные сплавы

В95

-

Al-Zn-Mg-Cu

Также В93
 

Жаропрочные сплавы

АК4-1

-

Al-Cu-Mg-Ni-Fe

Также АК4

1201

2219

Al-Cu-Mn

Также Д20

 Ковочные сплавыАК6

-

 

Al-Cu-Mg-Si

 
АК8

2014

    Состояния поставки                                                                                                                                      Сплавы, упрочняемые давлением,  упрочняются только  холодной деформацией (холодная прокатка или волочение). Деформационное упрочнение приводит к увеличению прочности и твердости, но уменьшает пластичность. Восстановление пластичности достигается рекристаллизационным отжигом. Прокат из этой группы сплавов имеет следующие состояния поставки, указываемые в маркировке полуфабриката:   

1)  не имеет обозначения - после прессования или горячей прокатки без термообработки  

2)  М  -  отожженное

3)  Н4 -  четвертьнагартованное

4)  Н2  - полунагартованное

5)  Н3  - нагартованное на 3/4

6)  Н    - нагартованное

 

       Полуфабрикаты из термоупрочняемых сплавов упрочняются путем специальной термообработки. Она заключается в закалке с определенной температуры и последующей выдержкой в течение некоторого времени при другой температуре (старение). Происходящее при этом изменение структуры сплава,  увеличивает прочность, твердость без потери пластичности. Существует несколько вариантов термообработки. Наиболее распространены следующие состояния поставки термоупрочняемых сплавов, отражаемые в маркировке проката:  

1)  не имеет обозначения - после прессования или горячей прокатки без термообработки 

2)  М  -  отожженное

3)  Т    -  закаленное и естественно состаренное (на максимальную прочность)

4)  Т1  -  закаленное и искусственно состаренное (на максимальную прочность)

      Для некоторых сплавов производится термомеханическое упрочнение, когда нагартовка осуществляется после закалки. В этом случае в маркировке присутствует ТН или Т1Н. Другим режимам старения соответствуют состояния Т2, Т3, Т5. Обычно им соответствует меньшая прочность, но большая коррозионная стойкость или вязкость разрушения.

      Приведенная маркировка состояний соответствует российским ГОСТам.

 

       Физические свойства алюминиевых сплавов.    

      Плотность алюминиевых сплавов незначительно отличается от плотности чистого алюминия (2.7г/см3). Она изменяется от 2.65 г/см3 для сплава АМг6 до 2.85 г/см3 для сплава В95.

      Легирование практически не влияет на величину модуля упругости и модуля сдвига. Например, модуль упругости упрочненного дуралюминия Д16Т  практически равен модулю упругости чистого алюминия А5 (Е=7100 кгс/мм2). Однако, за счет того, что предел текучести сплавов в несколько раз превышает предел текучести чистого алюминия, алюминиевые сплавы уже могут использоваться в качестве конструкционного материала с разным уровнем нагрузок (в зависимости от марки сплава и его состояния).

      За счет малой плотности удельные значения предела прочности,  предела текучести и модуля упругости (соответствующие величины, поделенные на величину плотности) для прочных алюминиевых сплавов сопоставимы с соответствующими значениями удельных величин для стали и титановых сплавов.  Это позволяет высокопрочным алюминиевым сплавам конкурировать со сталью и титаном, но только до температур не превышающих 200 С.

      Большинство  алюминиевых сплавов  имеют худшую электро- и теплопроводность,  коррозионную стойкость и свариваемость по сравнению с чистым алюминием.

       Ниже в таблице приведены значения твердости, тепло- и электропроводности для нескольких сплавов в различных состояниях. Поскольку значения твердости коррелируют с величинами предела текучести и предела прочности, то эта таблица дает представление о порядке и этих величин.

       Из таблицы видно, что сплавы с большей степенью легирования имеют заметно меньшую электро- и теплопроводность, эти величины также существенно зависят от состояния сплава (М, Н2, Т или Т1):

   марка

        твердость,

                НВ

  электропроводность в

 % по отношению к меди

    теплопроводность

              в кал/оС

   М  Н2    Н,Т(Т1)      М   Н2 Н, Т(Т1)      М    Н2  Н, Т(Т1) 
 А8 - АД0    25          35   60    0.52    
     АМц  30  40      55   50   40   0.45  0.38   
    АМг2  45  60    35          30   0.34      0.30
    АМг5  70     30    0.28  
    АД31        80   55          55  0.45  
     Д16  45     105   45          30  0.42     0.28
     В95      150           30      0.28

 

Из таблицы видно, что только сплав АД31 сочетает высокую прочность и высокую электропроводность. Поэтому «мягкие» электротехнические шины производятся из АД0, а «твердые» - из АД31 (ГОСТ 15176-89). Электропроводность этих шин составляет (в мкОм*м):

0,029 – из АД0   (без термообработки, сразу после прессования)

0,031 – из АД31 (без термообработки, сразу после прессования)

0.035 – из АД31Т (после закалки и естественного старения)

 

      Теплопроводность многих сплавов (АМг5, Д16Т, В95Т1) вдвое ниже, чем у чистого алюминия, но все равно она выше, чем у сталей.

       Коррозионные свойства. 

     Наилучшие коррозионные свойства имеют сплавы АМц, АМг, АД31, а худшие – высоко-прочные сплавы Д16, В95, АК. Кроме того   коррозионные свойства термоупрочняемых сплавов существенно зависят от режима закалки и старения. Например сплав Д16 обычно применяется в естественно-состаренном состоянии (Т). Однако свыше 80оС его коррозионные свойства значительно ухудшаются и для использования при больших температурах часто применяют искусственное старение, хотя ему соответствует меньшая прочность и пластичность (чем после естественного старения). Многие прочные термоупрочняемые сплавы подвержены коррозии под напряжением и расслаивающей коррозии.

       Свариваемость.

    Хорошо свариваются всеми видами сварки  сплавы АМц и АМг.  При сварке нагартованного проката в зоне сварочного шва происходит отжиг, поэтому прочность шва соответствует прочности основного материала в отожженном состоянии.

    Из термоупрочняемых сплавов хорошо свариваются авиали, сплав 1915. Сплав 1915 относится к самозакаливающимся, поэтому сварной шов со временем приобретает прочность основного материала. Большинство других сплавов свариваются только точечной сваркой. 

       Механические свойства.

       Прочность сплавов АМц и АМг возрастает (а пластичность уменьшается) с увеличением степени легирования. Высокая коррозионная стойкость и свариваемость определяет их применение в конструкциях малой нагруженности. Сплавы АМг5 и АМг6 могут использоваться в средненагруженных конструкциях.  Эти сплавы упрочняются только холодной деформацией, поэтому свойства изделий из этих сплавов определяются  состоянием полуфабриката, из которого они были изготовлены.

       Термоупрочняемые сплавы позволяют производить упрочнение деталей после их изготовления если исходный полуфабрикат не подвергался термоупрочняющей обработке.

      Наибольшую прочность после упрочняющей термообработки (закалка и старение) имеют сплавы Д16, В95, АК6, АК8, АК4-1 (из доступных в свободной продаже).

 Самым распространенным сплавом является Д16. При комнатной температуре он уступает многим сплавам по статической прочности, но имеет наилучшие показатели конструкционной прочности (трещиностойкость). Обычно применяется в естественно состаренном состоянии (Т). Но свыше 80 С начинает ухудшаться его коррозионная стойкость. Для использования сплава при температурах 120-250 С изделия из него подвергают искусственному старению. Оно обеспечивает лучшую коррозионную стойкость и больший предел текучести по сравнению с естественно-состаренным состоянием.

    С ростом температуры прочностные свойства сплавов меняются в разной степени, что определяет их разную применимость в зависимости от температурного диапазона.

    Из этих сплавов до 120 С наибольшие пределы прочности и текучести имеет В95Т1. Выше этой температуры он уже уступает сплаву Д16Т. Однако, следует учитывать, что В95Т1 имеет значительно худшую конструкционную прочность, т.е. малую трещиностойкость, по сравнению с Д16. Кроме того В95 в состоянии Т1 подвержен коррозии под напряжением. Это ограничивает его применение в изделиях, работающих на растяжение. Улучшение коррозионных свойств и существенное улучшение трещиностойкости достигается в изделиях обработанных по режимам Т2 или Т3.

  При температурах 150-250 С большую прочность имеют Д19, АК6, АК8.  При больших температурах (250-300 С) целесообразно применение других сплавов -  АК4-1, Д20, 1201. Сплавы Д20 и 1201 имеют самый широкий температурный диапазон применения (от криогенных -250 С до +300 С) в условиях высоких нагрузок.

     Сплавы АК6 и АК8 пластичны при высоких температурах, что позволяет использовать их для изготовления поковок и штамповок. Сплав АК8 характеризуется большей  анизотропией механических свойств, у него меньше трещиностойкость, но он сваривается лучше, чем АК6.

    Перечисленные высокопрочные сплавыт  плохо свариваются и имеют низкую коррозионную стойкость. К свариваемым термоупрочняемым сплавам с нормальной прочностью относится сплав 1915.  Это самозакаливающийся сплав (допускает закалку со скоростью естественного охлаждения), что позволяет обеспечить высокую прочность сварного шва. Сплав 1925, не отличаясь от него по механическим свойствам, сваривается хуже. Сплавы 1915 и 1925 имеют большую прочность, чем АМг6 и не уступают ему  по характеристикам сварного шва.

     Хорошо свариваются, имеют высокую коррозионную стойкость сплавы средней прочности - авиали (АВ, АД35, АД31,АД33).        

 

        АЛЮМИНИЕВЫЙ ПРОКАТ.

    Из алюминия и его сплавов производятся все  виды проката – фольга, листы, ленты, плиты, прутки, трубы, проволока.  Следует иметь в виду, что для многих термоупрочняемых сплавов имеет место "пресс-эффект" - механические свойства  прессованных изделий выше, чем у горячекатаных (т.е. круги имеют лучшие показатели прочности, чем листы).   

 

     Прутки, профили, трубы

    Прутки из термоупрочняемых сплавов поставляются в состоянии "без термообработки" или в упрочненном состоянии (закалка с последующим естественным или искусственным старением). Прутки из термически неупрочняемых сплавов производятся прессованием и поставляются в состоянии "без термообработки".

    Общее представление о механических свойствах алюминиевых сплавов дает гистограмма, на которой представлены гарантированные показатели для прессованных прутков при нормальных температурах:

 

    

          

      Из всего приведенного многообразия в свободной продаже всегда имеются прутки из Д16, причем круги диаметром до 100 мм включительно обычно поставляются в естественно состаренном состоянии (Д16Т). Фактические значения (по сертификатам качества) для них составляют:  предел текучести ?0.2 = (37-45), предел прочности при разрыве ?в = (52-56), относительное удлинение ?=(11-17%). Обрабатываемость прутков из Д16Т очень хорошая,  у прутков Д16 (без термообработки) обрабатываемость заметно хуже. Их твердость соответственно  105 НВ и 50 НВ. Как уже отмечалось, деталь, изготовленная из Д16 может быть упрочнена закалкой и естественным старением.  Максимальная прочность после закалки достигается на 4-е сутки.

     Поскольку дуралюминиевый сплав Д16 не отличается хорошими коррозионными свойствами, желательна дополнительная защита изделий из него анодированием или нанесением лако-красочных покрытий. При эксплуатации при температурах выше 80-100 С проявляется склонность к межкристаллитной коррозии.

     Необходимость дополнительной защиты от коррозии относится и к другим высокопрочным сплавам (Д1, В95, АК).

     Прутки из АМц и АМг обладают высокой коррозионной стойкостью, допускают возможность дополнительного формообразования горячей ковкой (в интервале 510-380оС).

     

      Разнообразные профили широко представлены из сплава АД31 с различными вариантами термообработки. Применяются для конструкций невысокой и средней прочности, а также для изделий декоративного назначения.

      Прутки, трубы и профили из АД31 имеют высокую общую коррозионную стойкость, не склонны к коррозии под напряжением. Сплав хорошо сваривается точечной, роликовой и аргонно-дуговой сваркой.  Коррозионная стойкость сварного шва такая же, как у основного материала.  Для повышения прочности сварного шва необходима специальная термообработка.

      Уголки производятся в основном из АД31, Д16 и АМг2.

 

      Трубы производятся  из большинства сплавов, представленных на рисунке.  Они поставляются в состояниях без термообработки (прессованные), закаленные и состаренные, а также отожженные и нагартованные. Параметры их механических свойств примерно соответствуют, приведенным на гистограмме. При выборе материала труб кроме прочностных характеристик учитывается его коррозионная стойкость и свариваемость. Наиболее доступны трубы из АД31. 

             Наличие кругов, труб и уголков - см. на странице сайта "Алюминиевые круги, трубы и уголки"

 

       Плоский алюминиевый прокат.

       Листы общего назаначения производятся по ГОСТ 21631-76, ленты - по ГОСТ 13726-97, плиты по ГОСТ 17232-99.

      Листы из сплавов с пониженной или низкой коррозионной устойчивостью (АМг6, 1105, Д1, Д16, ВД1, В95) плакируются. Химический состав плакирующего сплава обычно соответствует марке АД1, а толщина слоя составляет  2 – 4% от номинальной толщины листа.

      Плакирующий слой обеспечивает электрохимическую защиту основного металла от коррозии. Это означает, что коррозионная защита  металла обеспечивается даже при наличии механических повреждений защитного слоя (царапины). 

      Маркировка листов включает в себя: обозначение марки сплава + состояние поставки +  вид плакировки (если она присутствует). Примеры маркировки:

А5         -  лист марки А5 без плакировки и термообработки

А5Н2     - лист марки А5 без плакировки, полунагартованный

АМг5М - лист марки Амг5 без плакировки, отожженный

Д16АТ  - лист марки Д16 с нормальной плакировкой, закаленный и естественно  состаренный.

 

    На гистограмме приведены основные характеристики механических свойств листов в различных состояниях поставки для наиболее используемых марок. Состояние "без термообработки" не показано. В большинстве случаев  величины предела текучести и предела прочности  такого проката близки к соответствующим значениям для отожженного состояния, а пластичность ниже. Плиты выпускаются в состоянии "без термообработки". 

    

 

Из рисунка видно, что выпускаемый ассортимент листов дает широкие возможности для выбора материала по прочности, пределу текучести и пластичности с учетом коррозионной стойкости и свариваемости.Для ответственных конструкций из прочных сплавов обязательно учитывается трещиностойкость и характеристики сопротивления усталости.

       Листы из технического алюминия (АД0, АД1, А5-А7).

     Нагартованные и полунагартованные листы используются для изготовления ненагружен-ных конструкций, резервуаров (в т.  ч. для криогенных температур),  требующих обеспечения высокой коррозионной стойкости и допускающих применение сварки. Они используются также для изготовления  вентиляционных коробов,  теплоотражающих экранов (отражательная способность алюминиевых листов достигает 80%), изоляции теплотрасс.

     Листы в мягком состоянии используются для уплотнения неразъемных соединений. Высокая пластичность  отожженных листов позволяет производить изделия глубокой вытяжкой.

     Технический алюминий отличается высокой коррозионной устойчивостью во многих средах (см. страницу "Свойства алюминия"). Однако, за счет разного содержания примесей в перечисленных марках, их антикоррозионные свойства в некоторых средах всё-таки различаются. 

     Алюминий  сваривается всеми методами. Технический алюминий и его сварные соединения обладают высокой коррозионной стойкостью к межкристаллитной, расслаивающей коррозии и не склонны к коррозионному растрескиванию.

      Кроме листов, изготавливаемых по ГОСТ21631-76, в свободной продаже имеются листы, произведенные по Евростандарту, с маркировкой 1050А. По химическому составу они соответствуют марке АД0. Фактические параметры (по сертификатам качества) механических свойств составляют (для  листов 1050АН24): предел текучести ?0.2 = (10.5-14), предел прочности при разрыве ?в=(11.5-14.5), относительное удлинение ?=(5-10%), что соответствует полунагартованному состоянию (ближе к нагартованному). Листы с маркировкой 1050АН0 или 1050АН111 соответствуют отожженному состоянию.

          Листы (и ленты) из сплава 1105.    

Из-за пониженной коррозионной стойкости изготавливается плакированным.  Широко применяется для изоляции теплотрасс, для изготовления малонагруженных деталей, не требующих высоких коррозионных свойств. 

      Листы из сплава АМц.

      Листы из сплава АМц хорошо деформируются в холодном и горячем состояниях. Из-за невысокой прочности (низкого предела текучести) используются для изготовления только малонагруженных конструкций. Высокая пластичность  отожженных листов позволяет производить из них малонагруженные изделия глубокой вытяжкой.

    По коррозионной стойкости АМц практически не уступает техническому алюминию. Хорошо свариваются аргонно-дуговой, газовой и контактной сваркой. Коррозионная стойкость сварного шва такая же, как у основного металла.  

      Листы из сплавов АМг.

      Чем больше содержание магния в сплавах этой группы, тем они прочнее , но менее пластичны.

      Механические свойства.

      Наиболее распостранены листы из сплавов АМг2 (состояния М, Н2, Н) и АМг3 (состояния М и Н2), в том числе рифленые.  Сплавы АМг1, АМг2, АМг3, АМг4 хорошо деформируются и в горячем и в холодном состоянии. Листы обладают удовлетворительной штампуемостью. Нагартовка заметно снижает штампуемость листов. Листы этих марок применяются для конструкций средней нагруженности.

     Листы из АМг6 и АМг6 в упрочненном состоянии не поставляются.  Применяются для конструкций повышенной нагруженности.

            Коррозионная стойкость.      Сплавы АМг отличаются высокой коррозионной стойкостью в растворах кислот и щелочей.      Сплавы АМг1, АМг2, АМг3, АМг4 имеют высокую коррозионную стойкость к основным видам коррозии как  в отожженном так и в нагартованном состонии.

     Сплавы АМг5, АМг6 склонны к коррозии под напряжением и межкристаллитной коррозии. Для защиты от коррозии листы и плиты из этих сплавов плакируются, а заклепки из АМг5п ставят только анодированными.

       Свариваемость.

      Все сплавы АМг хорошо свариваются аргоннодуговой сваркой, но характеристики сварного шва зависят от содержания магния. С ростом его содержания уменьшается коэффициент трещинообразования,  возрастает пористость сварных соединений.

    Сварка нагартованных листов устраняет нагартовку в зоне термичес-кого влияния сварного соединения, механические свойства в этой зоне соответствуют свойствам  в отожженном состоянии. Поэтому сварные соединения нагартованных листов АМг имеют меньшую прочность по сравнению с основным материалом.

     Сварные соединения АМг1, АМг2, АМг3 обладают высокой стойкостью против коррозии. Для обеспечения коррозионной стойкости сварного шва АМг5 и АМг6 требуется специальная термообработка.

 

      Листы и плиты из Д1, Д16, В95.

      Высокопрочные сплавы Д1, Д16, В95 имеют низкую устойчивость к коррозии. Поскольку листы из них используются в конструкционных целях, то для коррозинной защиты они плакируются слоем технического алюминия. Следует помнить, что технологические нагревы плакированных листов из сплавов, содержащих медь (например Д1, Д16), не должны даже кратковременно превышать 500 С.

     Наиболее распространены листы из дуралюминия Д16. Фактические значения механических параметров для листов из Д16АТ (по сертификатам качества) составляют:  предел текучести ?0.2 = (28-32), предел прочности при разрыве ?в= (42-45), относительное удлинение ?=(26-23%).

    Сплавы этой группы свариваются точечной сваркой, но не свариваются плавлением. Поэтому основной способ их соединения - заклепки. Для заклепок используется проволока из Д18Т и В65Т1. Сопротивление срезу для них соответственно 200 и 260  МПа.

         Из толстолистового проката доступны плиты из Д16 и В95. Плиты поставляются в состоянии "без термообработки", но  возможно термоупрочнение уже готовых деталей после их изготовления. Прокаливаемость Д16 допускает термоупрочнение деталей сечением до 100-120 мм. Для В95 этот показатель составляет 50-70 мм.

 

      Листы и плиты из В95 имеют большую (по сравнению с Д16) прочность при работе на сжатие.

 

      Наличие листов и плит - см. на странице сайта "Алюминиевые листы" 

 ********************    

  Выше кратко рассмотрены свойства алюминиевых сплавов общего назначения. Для специальных целей применяются или другие сплавы, или более чистые варианты сплавов Д16 и В95. Чтобы представить многообразие специальных сплавов, применяемых в авиа-ракетной технике, стоит зайти на сайт http://www.viam.ru.

Подход к выбору материалов для корабля «Буран» интересно отражен на сайте http://www.buran.ru/htm/inside.htm 

Очень интересные материалы об истории создания и применении алюминиевых сплавов в масштабных проектах СССР содержатся в воспоминаниях академика Фридляндера:

http://vivovoco.rsl.ru/VV/JOURNAL/VRAN/2004/ALLOYS.HTM http://www.arcan7.ru/library/articles/230.html  http://vivovoco.rsl.ru/VV/JOURNAL/VRAN/02_01/FRID.HTM http://scilib.narod.ru/Avia/Fridlyander/contents.htm 

 

                                                                         На главную

 

 

 

 

normis.com.ua

Химические и физические свойства алюминия. Физические свойства гидроксида алюминия :: SYL.ru

Этот легкий металл с серебристо-белым оттенком в современной жизни встречается почти повсеместно. Физические и химические свойства алюминия позволяют широко использовать его в промышленности. Самые известные месторождения – в Африке, Южной Америке, в Карибском регионе. В России места добычи бокситов имеются на Урале. Мировыми лидерами по производству алюминия являются Китай, РФ, Канада, США.

Добыча Al

В природе этот серебристый металл в силу своей высокой химической активности встречается лишь в виде соединений. Наиболее известные геологические породы, содержащие алюминий, – это бокситы, глиноземы, корунды, полевые шпаты. Промышленное значение имеют бокситы и глиноземы, именно месторождения этих руд позволяют добывать алюминий в чистом виде.

Свойства

Физические свойства алюминия позволяют легко вытягивать заготовки этого металла в проволоку и прокатывать в тонкие листы. Этот металл не является прочным, для повышения данного показателя при выплавке его легируют различными добавками: медью, кремнием, магнием, марганцем, цинком. Для промышленного назначения важно еще одно физическое свойство вещества алюминия – это его способность быстро окисляться на воздухе. Поверхность изделия из алюминия в естественных условиях обычно покрыта тонкой оксидной пленкой, которая эффективно защищает металл и препятствует его коррозии. При уничтожении этой пленки серебристый металл быстро окисляется, при этом его температура заметно повышается.

Внутреннее строение алюминия

Физические и химические свойства алюминия во многом зависят от его внутреннего строения. Кристаллическая решетка этого элемента является разновидностью гранецентрированного куба. Данный тип решетки присущ многим металлам, таким, как медь, бром, серебро, золото, кобальт и другие. Высокая теплопроводность и способность проводить электричество сделали этот металл одним из самых востребованных в мире. Остальные физические свойства алюминия, таблица которых представлена ниже, раскрывают полностью его свойства и показывают сферы их применения.

Легирование алюминия

Физические свойства меди и алюминия таковы, что при добавлении к алюминиевому сплаву некоторого количества меди его кристаллическая решетка искривляется, и прочность самого сплава повышается. На этом свойстве Al основано легирование легких сплавов для повышения их прочности и стойкости к воздействию агрессивной среды.

Объяснение процесса упрочнения лежит в поведении атомов меди в кристаллической решетке алюминия. Частицы Cu стремятся выпасть из кристаллической решетки Al, группируются на ее особых участках. Там, где атомы меди образуют скопления, образуется кристаллическая решетка смешанного типа CuAl2 , в которой частицы серебристого металла одновременно входят в состав и общей кристаллической решетки алюминия, и в состав решетки смешанного типа CuAl2. Силы внутренних связей в искаженной решетке гораздо больше, чем в обычной. А значит, и прочность новообразованного вещества гораздо выше.

Химические свойства

Известно взаимодействие алюминия с разбавленными серной и соляной кислотой. При нагревании этот металл в них легко растворяется. Холодная концентрированная или сильно разбавленная азотная кислота не растворяет этот элемент. Водные растворы щелочей активно воздействуют на вещество, в процессе реакции образуя алюминаты – соли, в составе которых имеются ионы алюминия. Например:

Al2O3 +3h3O+2NaOH=2Na[Al(OH)4]

Получившееся в результате реакции соединение носит название тетрагидроксоалюминат натрия.

Тонкая пленка на поверхности алюминиевых изделий защищает этот металл не только от воздуха, но и от воды. Если эту тонкую преграду убрать, элемент станет бурно взаимодействовать с водой, выделяя из нее водород.

2AL+6h3O= 2 AL (OH)3+3Н2↑

Образовавшееся вещество называется гидроксидом алюминия.

AL (OH)3 реагирует с щелочью, образуя кристаллы гидроксоалюмината:

Al(OH)2+NaOH=2Na[Al(OH)4]

Если это химическое уравнение сложить с предыдущим, получим формулу растворения элемента в щелочном растворе.

Al(OH)3+2NaOH+6h3O=2Na [Al(OH)4]+3h3↑

Горение алюминия

Физические свойства алюминия позволяют ему вступать в реакцию с кислородом. Если порошок этого металла или алюминиевую фольгу нагреть, то она вспыхивает и горит белым ослепительным пламенем. В конце реакции образуется оксид алюминия Al2O3.

Глинозем

Полученный оксид алюминия имеет геологическое название глинозем. В естественных условиях он встречается в виде корунда – твердых прозрачных кристаллов. Корунд отличается высокой твердостью, в шкале твердых веществ его показатель составляет 9. Сам корунд бесцветен, но различные примеси могут окрасить его в красный и синий цвет, так получаются драгоценные камни, которые в ювелирном деле называются рубинами и сапфирами.

Физические свойства оксида алюминия позволяют выращивать эти драгоценные камни в искусственных условиях. Технические драгоценные камни используются не только для ювелирных украшений, они применяются в точном приборостроении, для изготовления часов и прочего. Широко используются искусственные кристаллы рубина и в лазерных устройствах.

Мелкозернистая разновидность корунда с большим количеством примесей, нанесенная на специальную поверхность, известна всем как наждак. Физические свойства оксида алюминия объясняют высокие абразивные свойства корунда, а также его твердость и устойчивость к трению.

Гидроксид алюминия

Al2 (OH)3 является типичным амфотерным гидроксидом. В соединении с кислотой это вещество образует соль, содержащую положительно заряженные ионы алюминия, в щелочах образует алюминаты. Амфотерность вещества проявляется в том, что он может вести себя и как кислота, и как щелочь. Это соединение может существовать и в желеобразном, и в твердом виде. В воде практически не растворяется, но вступает в реакцию с большинством активных кислот и щелочей. Физические свойства гидроксида алюминия используются в медицине, это популярное и безопасное средство снижения кислотности в организме, его применяют при гастритах, дуоденитах, язвах. В промышленности Al2 (OH)3 используется в качестве адсорбента, он прекрасно очищает воду и осаждает растворенные в ней вредные элементы.

Промышленное использование

Алюминий был открыт в 1825 году. Поначалу данный металл ценился выше золота и серебра. Это объяснялось сложностью его извлечения из руды. Физические свойства алюминия и его способность быстро образовывать защитную пленку на своей поверхности затрудняли исследование этого элемента. Лишь в конце 19 века был открыт удобный способ плавки чистого элемента, пригодный для использования в промышленных масштабах.

Легкость и способность сопротивляться коррозии – уникальные физические свойства алюминия. Сплавы этого серебристого металла применяются в ракетной технике, в авто-, судо-, авиа- и приборостроении, в производстве столовых приборов и посуды.

Как чистый металл Al используется при изготовлении деталей для химической аппаратуры, электропроводов и конденсаторов. Физические свойства алюминия таковы, что его электропроводность не так высока, как у меди, но этот недостаток компенсируется легкостью рассматриваемого металла, что позволяет делать провода из алюминия более толстыми. Так, при одинаковой электропроводности алюминиевый провод весит в два раза меньше медного.

Не менее важным является применение Al в процессе алитирования. Так называется реакция насыщения поверхности чугунного или стального изделия алюминием с целью защиты основного металла от коррозии при нагревании.

В настоящее время изведанные запасы алюминиевых руд вполне сопоставимы с потребностями людей в этом серебристом металле. Физические свойства алюминия могут преподнести еще немало сюрпризов его исследователям, а сферы применения этого металла гораздо шире, чем можно представить.

www.syl.ru

Свойства алюминия

Алюминий и его сплавы имеют малую плотность 2,64— 2,89 г/см3. Прочностные же свойства зависят от легирования, тер­мической обработки, степени деформирования и могут достигать высоких значений. По прочности многие алюминиевые сплавы не уступают конструкционным сталям.

Чистый алюминий (суммарное содержание примесей не более 0,05%) имеет гранецентрированную кубическую решетку с пара­метрами 4,04 А. Температура его плавления 659,8—660,2° С, температура кипения 1800—2500° С.

Для сплавов алюминия электропроводность составляет 30—50% электропроводности меди, а для чистого алюминия 62—65% электропроводности меди.

Алюминий окисляется с образованием окисной пленки Аl203, которая защищает его от дальнейшего окисления,Химический состав деформируемых и литейных алюминиевых сплавов по ГОСТам 4784—65 и 2685—63.

Из алюминиевых сплавов в основном изготовляют конструк­ции, работающие при сравнительно низких температурах не свыше 350° С. Так дуралюмин используют для работы при темпе­ратурах не более 200° С, сплавы типа В95 до 125° С, авиали до 80—100° С при длительной работе и до 200° С при кратковре­менной. Специальные сплавы САП (спеченный алюминиевый поро­шок) применяют и для работы при более высоких температурах. До температуры 100° С кратковременные механические свойства меняются мало. Обращает внимание высокое относительное удли­нение алюминиевых сплавов при низких температурах.

Характеристики длительной проч­ности термически не упрочняемых сплавов обычно ниже, чем тер­мически упрочняемых.

Длительные выдержки сплавов типа авиаль при температурах свыше 80—100° С приводят к их упрочнению и снижению пласти­ческих свойств. Исследованиями, проведенными авторами, уста­новлено, что относительное удлинение снижается при указанных условиях с 20—25% (исходное состояние после закалки и есте­ственного старения) до 1—2%. Подобное ухудшение свойств, при которых возможно хрупкое разрушение конструкций, яв­ляется существенным препятствием применения сплавов такого типа для работы при температурах выше 80° С.

Циклическая прочность 

Циклическая прочность деформируемых сплавов при симме­тричном изгибе на базе 5*108циклов составляет 3,5 кГ/мм2 для сплава А ДМ, 4,2—6,3 кГ/мм2 для сплава АДН, 5—6,5 кГ/мм2 для сплава АМцАМ, 15 кГ/мм2 для сплава В95.

Области применения литейных сплавов различны. Сплавы группы I рекомендуют для литья в песчаные формы, кокиль и для литья под давлением. Сплав АЛ22 обычно применяют в закален­ном состоянии, а сплав АЛ23 и АЛ29 — в литом. Сплавы группы II имеют высокие литейные свойства благодаря наличию в сплавах двойной эвтектики, которая уменьшает также литейную усадку и склонность к образованию горячих трещин. Сплавы AЛ2, АЛ4 и АЛ9 обладают повышенной коррозионной стойкостью, поэтому их применяют для изделий, работающих во влажной и морской средах. С целью получения заданных механических свойств отливки подвергают термической обработке по различ­ным режимам.

Сплавы группы III обладают высокими механи­ческими свойствами, особенно пределом текучести и повышенной жаропрочностью. У этих сплавов пониженные литейные свойства и коррозионная стойкость, кроме того, они склонны к образова­нию горячих трещин. Для выполнения отливок сложной формы такие сплавы не рекомендуют. Сплав АЛ7 применяют для деталей, испытывающих средние нагрузки и температуры не свыше 200° С. Сплав АЛ 19 по сравнению с АЛ 17 имеет более высокую жаропроч­ность (в 2 раза), и применяют его для силовых деталей в условиях статических и ударных нагрузок при температурах до 300° С.

Сплавы группы IV применяют для всех способов литья. По ли­тейным свойствам они менее технологичны, чем сплавы II.

Сплавы группы V применяют для самых разнообразных дета­лей, работающих при высоких температурах. К этой группе относятся также самозакаливающиеся сплавы.

Механические свойства

Механические свойства всех вышеуказанных, литейных спла­вов зависят от режимов термической обработки, определяющей структурное и фазовое состояние сплавов.

Высокая коррозионная стойкость алюминия объясняется обра­зованием окисиой пленки Аl203. Коррозионная стойкость алю­миния зависит от влияния агрессивной среды на растворимость защитной окисной пленки, от чистоты обработки поверхности и режима термической обработки. Чистый алюминий обладает высокой стойкостью в сухом и влажном воздухе. В азотной кислоте концентрации 30—50% при увеличении температуры скорость коррозии алюминия возрастает. При концентрации азотной кис­лоты выше 80% коррозия резко снижается. Алюминий обладает высокой стойкостью в разбавленной серной кислоте и в концен­трированной при 20° С. Средние концентрации серной кислоты (более 40%) наиболее опасны для алюминия. При комнатных тем­пературах алюминий устойчив в фосфорной и уксусных кислотах. Такие, как муравьиная, щавелевая, трихлоруксусная и другие хлороорганические кислоты значительно разрушают алюминий. В растворах едких щелочей окисная пленка алюминия раство­ряется. Растворы углекислых солей калия и натрия оказывают меньшее влияние на скорость коррозии алюминия.

Алюминий при температурах до 300° С обладает хорошей стойкостью в жидких металлических средах, например, натрии.

Коррозионная стойкость алюминия в воде и водяном паре при повышенных температурах (выше 200° С) зависит от чистоты алюминия. Если происходит движение среды, то скорость корро­зии повышается в 10—60 раз.

Основными видами коррозии алюминиевых сплавов является межкристаллитная коррозия и коррозия под напряжением. Для повышения коррозионных свойств применяют защитные покрытия, такие, как плакирование, оксидные пленки, лакокрасочные по­крытия, смазки, хромовые или никель-хромовые гальванические покрытия.

Технология производства

Технология производства и термическая обработка могут оказывать существенное влияние на коррозионные свойства спла­вов. Сплавы АД, АД1, АМц, АМг2 и АМгЗ мало чувствительны к методам производства. Коррозионная стойкость сплавов АМг5, АМгб во многом зависит от методов производства. У этих сплавов при длительном нагреве на 60—70° С проявляется склонность к межкристаллитной коррозии и коррозии под напряжением.

Сплавы Д1, Д18, Д16 и типа В95 имеют пониженную корро­зионную стойкость. Подобные сплавы применяют с соответствую­щей защитой от коррозии. Сплавы типа авиаль обладают высокой коррозионной стойкостью в воде высокой чистоты с до­бавлением углекислого газа при температурах до 100° С.

При изучении влияния облучения на некоторые характеристики алюминия установлено, что после облучения интегральным пото­ком 1,1 х 1019 нейтрон/см2 при 80° С критическое напряжение сдвига увеличивается в 5 раз. При этом электросопротив­ление алюминия повышается на 30%. Влияние облучения на электрическое и критическое сопротивления сдвигу снимается при температуре около 60° С.

Из разработанных свариваемых, термически обрабатываемых, самозакаливающихся при сварке сплавов, наиболее характерны сплавы системы Аl—Zn—Mg. Однако, обладая удовлетвори­тельными прочностными свойствами, они склонны к коррозии под напряжением и замедленному разрушению. Такая склонность вызвана переходом от зонной к фазовой стадии старения даже при комнатных температурах эксплуатации сварных соединений. Поэтому сплавы системы Аl—Zn-Mg можно применять в усло­виях низких температур, исключающих переход к фазовому ста­рению при низком уровне сварочных напряжений. Содержание цинка и магния должно быть при этом минимальным.

Высокая стойкость 

К самозакаливающимся сплавам относится сплав 01911, по химическому составу он является среднелегированным сплавом системы Аl—Zn-Mg. Высокая стойкость против коррозии под напряжением обеспечивается суммарным содержанием цинка и магния до 6,5% и дополнительным введением марганца, хрома, меди и циркония. Причем медь ухудшает свариваемость сплава, поэтому для его сварки применяют проволоку марки 01557, аналогичную по химическому составу сплаву АМг5, но с добавкой циркония й хрома. Сплавы Д20 и АК8 достаточно прочны, но имеют низкую общую коррозионную стойкость. Они обладают высокой стойкостью против коррозии под напряжением и замедленного разрушения.

Перспективными являются спеченные сплавы. К числу жаро­стойких относятся сплавы типа САП, которые можно применять для конструкций, работающих при температурах до 400—500° С. САП содержит до 13% тугоплавкой окисной фазы, поэтому тем­пература плавления его очень высокая (2000° С).

Из сплавов САП-1 (6,0—9,0% А1203) и САП-2 (9,1 — 13,0% А1203) изготовляют такие же полуфабрикаты, как из алю­миниевых сплавов. Сплав САП-3 применяют только для прессо­ванных полуфабрикатов. Наибольшая масса прессованных полу­фабрикатов до 400 кг. Размеры изготовляемых листов 1000 X Х7000 мм при толщине от 0,8 до 10 мм.

Сплавы имеют высокие прочностные свойства. Так у сплава САП-1 при 20° С ов = 35 кГ/мм2, а у САП-3  40 кГ/мм2. Подобными свойствами обладает сплав САС-1 (25—30% Si и 7% Nі), получаемый из распыленного порошка. Он износостоек, достаточно прочен (<та = 25,0-28,0 кГ/мм2), имеет коэффициент линейного расширения, близкий к стали, и высокий модуль упру­гости.

Сплавы САС-1 и САП не склонны к коррозии под напряжением и замедленным разрушениям. Сплав САП можно применять при сравнительно высоких температурах эксплуатации. При сварке этих сплавов обычно применяют присадочную проволоку марки АМг6.

Также по теме:

svarder.ru

Алюминий: свойства химические и физические

Одними из самых удобных в обработке материалов являются металлы. Среди них также есть свои лидеры. Так, например, основные свойства алюминия известны людям уже давно. Они настолько подходят для применения в быту, что данный металл стал очень популярным. Каковы же свойства алюминия как простого вещества и как атома, рассмотрим в данной статье.

алюминий свойства химические

История открытия алюминия

Издавна человеку было известно соединение рассматриваемого металла - алюмокалиевые квасцы. Оно использовалось как средство, способное набухать и связывать между собой компоненты смеси, это было необходимо и при выделке кожаных изделий. О существовании в чистом виде оксида алюминия стало известно в XVIII веке, во второй его половине. Однако при этом чистое вещество получено не было.

Сумел же выделить металл из его хлорида впервые ученый Х. К. Эрстед. Именно он обработал амальгамой калия соль и выделил из смеси серый порошок, который и был алюминием в чистом виде.

Тогда же стало понятно, что химические свойства алюминия проявляются в его высокой активности, сильной восстановительной способности. Поэтому долгое время с ним никто больше не работал.

химические свойства алюминия

Однако в 1854 году француз Девиль смог получить слитки металла методом электролиза расплава. Этот способ актуален и по сей день. Особенно массовое производство ценного материала началось в XX веке, когда были решены проблемы получения большого количества электроэнергии на предприятиях.

На сегодняшний день данный металл - один из самых популярных и применяемых в строительстве и бытовой промышленности.

Общая характеристика атома алюминия

Если характеризовать рассматриваемый элемент по положению в периодической системе, то можно выделить несколько пунктов.

  1. Порядковый номер - 13.
  2. Располагается в третьем малом периоде, третьей группе, главной подгруппе.
  3. Атомная масса - 26,98.
  4. Количество валентных электронов - 3.
  5. Конфигурация внешнего слоя выражается формулой 3s23p1.
  6. Название элемента - алюминий.
  7. Металлические свойства выражены сильно.
  8. Изотопов в природе не имеет, существует только в одном виде, с массовым числом 27.
  9. Химический символ - AL, в формулах читается как "алюминий".
  10. Степень окисления одна, равна +3.

Химические свойства алюминия полностью подтверждаются электронным строением его атома, ведь имея большой атомный радиус и малое сродство к электрону, он способен выступать в роли сильного восстановителя, как и все активные металлы.

Алюминий как простое вещество: физические свойства

Если говорить об алюминии, как о простом веществе, то он представляет собой серебристо-белый блестящий металл. На воздухе быстро окисляется и покрывается плотной оксидной пленкой. Тоже самое происходит и при действии концентрированных кислот.

физические и химические свойства алюминия

Наличие подобной особенности делает изделия из этого металла устойчивыми к коррозии, что, естественно, очень удобно для людей. Поэтому и находит такое широкое применение в строительстве именно алюминий. Свойства вещества также еще интересны тем, что данный металл очень легкий, при этом прочный и мягкий. Сочетание таких характеристик доступно далеко не каждому веществу.

Можно выделить несколько основных физических свойств, которые характерны для алюминия.

  1. Высокая степень ковкости и пластичности. Из данного металла изготовляют легкую, прочную и очень тонкую фольгу, его же прокатывают в проволоку.
  2. Температура плавления - 660 0С.
  3. Температура кипения - 2450 0С.
  4. Плотность - 2,7 г/см3.
  5. Кристаллическая решетка объемная гранецентрированная, металлическая.
  6. Тип связи - металлическая.

Физические и химические свойства алюминия определяют области его применения и использования. Если говорить о бытовых сторонах, то большую роль играют именно уже рассмотренные нами выше характеристики. Как легкий, прочный и антикоррозионный металл, алюминий применяется в самолето- и кораблестроении. Поэтому эти свойства очень важно знать.

Химические свойства алюминия

С точки зрения химии, рассматриваемый металл - сильный восстановитель, который способен проявлять высокую химическую активность, будучи чистым веществом. Главное - это устранить оксидную пленку. В этом случае активность резко возрастает.

Химические свойства алюминия как простого вещества определяются его способностью вступать в реакции с:

  • кислотами;
  • щелочами;
  • галогенами;
  • серой.

С водой он не взаимодействует при обычных условиях. При этом из галогенов без нагревания реагирует только с йодом. Для остальных реакций нужна температура.

восстановительные свойства алюминия

Можно привести примеры, иллюстрирующие химические свойства алюминия. Уравнения реакций взаимодействия с:

  • кислотами - AL + HCL = AlCL3 + h3;
  • щелочами - 2Al + 6h3O + 2NaOH = Na[Al(OH)4] + 3Н2;
  • галогенами - AL + Hal = ALHal3;
  • серой - 2AL + 3S = AL2S3.

В целом, самое главное свойство рассматриваемого вещества - это высокая способность к восстановлению других элементов из их соединений.

Восстановительная способность

Восстановительные свойства алюминия хорошо прослеживаются на реакциях взаимодействия с оксидами других металлов. Он легко извлекает их из состава вещества и позволяет существовать в простом виде. Например: Cr2O3 + AL = AL2O3 + Cr.

В металлургии существует целая методика получения веществ, основанная на подобных реакциях. Она получила название алюминотермии. Поэтому в химической отрасли данный элемент используется именно для получения других металлов.

Распространение в природе

По распространенности среди других элементов-металлов алюминий занимает первое место. Его в земной коре содержится 8,8 %. Если же сравнивать с неметаллами, то место его будет третьим, после кислорода и кремния.

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико.

механические свойства алюминия

Самые распространенные вещества, содержащие рассматриваемый металл:

  • полевые шпаты;
  • бокситы;
  • граниты;
  • кремнезем;
  • алюмосиликаты;
  • базальты и прочие.

В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Получение

Физические и химические свойства алюминия позволяют получать его только одним способом: электролизом расплава соответствующего оксида. Однако процесс этот технологически сложен. Температура плавления AL2O3 превышает 2000 0С. Из-за этого подвергать электролизу непосредственно его не получается. Поэтому поступают следующим образом.

  1. Добывают бокситы.
  2. Очищают их от примесей, оставляя лишь оксид алюминия.
  3. Затем плавят криолит.
  4. Добавляют туда оксид.
  5. Данную смесь элекролизуют и получают чистый алюминий и углекислый газ.алюминий металлические свойства

Выход продукта составляет 99,7 %. Однако возможно получение и еще более чистого металла, который используется в технических целях.

Применение

Механические свойства алюминия не столь хороши, чтобы применять его в чистом виде. Поэтому чаще всего используются сплавы на основе данного вещества. Таких много, можно назвать самые основные.

  1. Дюралюминий.
  2. Алюминиево-марганцевые.
  3. Алюминиево-магниевые.
  4. Алюминиево-медные.
  5. Силумины.
  6. Авиаль.

Основное их отличие - это, естественно, сторонние добавки. Во всех основу составляет именно алюминий. Другие же металлы делают материал более прочным, стойким к коррозии, износоустойчивым и податливым в обработке.

Можно назвать несколько основных областей применения алюминия как в чистом виде, так и в виде его соединений (сплавов).

  1. Для изготовления проволоки и фольги, используемой в быту.
  2. Изготовление посуды.
  3. Самолетостроение.
  4. Кораблестроение.
  5. Строительство и архитектура.
  6. Космическая промышленность.
  7. Создание реакторов.алюминий свойства вещества

Вместе с железом и его сплавами алюминий - самый важный металл. Именно эти два представителя периодической системы нашли самое обширное промышленное применение в руках человека.

Свойства гидроксида алюминия

Гидроксид - самое распространенное соединение, которое образует алюминий. Свойства химические его такие же, как и у самого металла, - он амфотерный. Это значит, что он способен проявлять двойственную природу, вступая в реакции как с кислотами, так и со щелочами.

Сам по себе гидроксид алюминия - это белый студенистый осадок. Получить его легко при взаимодействии соли алюминия с щелочью или гидроксидом аммония. При взаимодействии с кислотами данный гидроксид дает обычную соответствующую соль и воду. Если же реакция идет с щелочью, то формируются гидроксокомплексы алюминия, в которых его координационное число равно 4. Пример: Na[Al(OH)4] - тетрагидроксоалюминат натрия.

fb.ru

Механические свойства алюминия

Марка Сумма примесей, % Состояние σВ, МПа σ0,2, МПа δ, % HB, МПа
A995 0,005 Литье
A5 0,5
A0
Деформированное и отожженное
Деформированное

 

Алюминий имеет высокую отражательную способность. Это позволяет использовать его в прожекторах, рефлекторах, экранах телевизоров.

Алюминий обладает высокой коррозионной стойкостью к морской воде, органическим кислотам, устойчив в нейтральных растворах солей магния, натрия. Химическая стойкость алюминия различной чистоты обусловливается образованием на его поверхности тончайшей, но плотной беспористой плёнки окиси алюминия Al2O3.

В машиностроении чистый алюминий практически не используется. Основное применение алюминия – это производство сплавов, достоинство которых в их малом удельном весе.

Алюминиевые сплавы классифицируют по технологии изготовления, способности к упрочнению термической обработкой и другим свойствам (рис. 6.5).

 

Рис. 6.5. Классификация алюминиевых сплавов

 

Технические алюминиевые сплавы подразделяют на две группы: применяемые в деформированном виде (прессованные, катаные, кованые) и в литом (деформируемые (А) и литейные (В) сплавы). Границу между сплавами этих групп определяет предел насыщения твёрдого раствора при эвтектической температуре (рис. 6.6). Деформируемые и литейные алюминиевые сплавы подразделяются на не упрочняемые (I) и упрочняемые (II) в результате термической обработки.

 

Рис. 6.6. Диаграмма состояния «Алюминий – легирующий элемент»

Основными легирующими элементами алюминиевых сплавов являются медь, магний, кремний, марганец, цинк, реже литий, никель, титан. Легирующие элементы повышают температуру рекристаллизации алюминия. Многие легирующие элементы образуют с алюминием твёрдые растворы ограниченной переменной растворимости и промежуточные фазы СuАl2, Mg2Si и др. Это даёт возможность подвергать сплавы упрочняющей термической обработке, состоящей из закалки на пересыщенный твёрдый раствор и естественного или искусственного старения.

К деформируемым сплавам, не упрочняемым термической обработкой, относятся сплавы АМц и АМг.

Сплавы типа АМц (АМц1) относятся к системе «Аl – Мn»; структура состоит из α-твёрдого раствора и вторичных выделений фазы МnАl6, переходящих в твёрдый раствор при повышении температуры. При легировании железом вместо МnАl6 образуется сложная тройная фаза (Мn, Fе)Аl6, которая не растворяется в алюминии, поэтому эти сплавы не упрочняются термической обработкой. В отожженном состоянии обладают высокой пластичностью (δ = 18–22 %) и низкой прочностью (σВ = 130 МПа).

Сплавы типа АМг (АМг1, АМг5) относятся к системе «Аl – Мg». Магний образует с алюминием α-твёрдый раствор, концентрация которого при повышении температуры увеличивается от 1,4 до 17,4 % в результате растворения фазы Мg2Аl3. Сплав АМг в отожженном состоянии имеет σВ = 190 МПа, δ = 23 %.

Сплавы типа АМц и АМг упрочняют с помощью пластической деформации и используют в нагартованном (80 % наклёпа) и полунагартованном (40 % наклёпа) состояниях. Применение наклёпа ограниченно из-за резкого снижения пластичности, поэтому в большинстве случаев сплавы используют в отожженном состоянии. Температура отжига: 350–420 °С.

Сплавы типа АМц и АМг применяют для изделий, получаемых глубокой вытяжкой или сваркой, от которых требуется высокая коррозионная стойкость (трубопроводы для бензина и масла, сварные баки и т. п.).

К деформируемым сплавам, упрочняемым термической обработкой, относятся сплавы системы «Аl – Сu». Они характеризуются хорошим сочетанием прочности и пластичности. Наиболее характерными представителями этих сплавов являются дуралюмины, широко применяемые в авиа-, судо- и ракетостроении. Согласно диаграмме «Аl – Сu» (рис. 6.7), медь с алюминием образуют твёрдый раствор, максимальная концентрация меди в котором 5,65 % при эвтектической температуре. С понижением температуры растворимость меди уменьшается, достигая 0,1 % при 20 °С.

Из твёрдого раствора выделяется θ-фаза – СuАl2, содержащая 54,1 % Сu. Она имеет объёмно центрированную тетрагональную кристаллическую решетку и обладает сравнительно высокой твёрдостью. В сплавах, дополнительно легированных магнием, образуется ещё ς-фаза (Аl2СuМg) с ромбической кристаллической решеткой.

 

 

Рис. 6.7. Диаграмма состояния «Al – Cu»

 

Маркируются дуралюмины буквой «Д» и цифрой, означающей номер сплава, например: Д1, Д16, Д20 и т. д. Поставляются в виде сортового проката в отожженном и термически упрочненном состоянии. Упрочняющая термическая обработка состоит из закалки и естественного старения. При закалке дуралюмины охлаждают в воде при 40 °С. После закалки структура состоит из пересыщенного раствора и нерастворимых фаз, образуемых примесями. При естественном старении образуются зоны Гинье-Престона, богатые медью и магнием.

Зоны Гинье-Престона – это скопление атомов меди, неразрывно связанных с α-твёрдым раствором. Они значительно тормозят перемещение дислокаций, что и является причиной возрастания прочности при старении. Старение продолжается пять-семь суток. Длительность старения значительно сокращается при увеличении температуры до 40 °С и особенно до 100 °С. После закалки и искусственного старения сплавы обладают лучшей пластичностью и менее чувствительны к концентраторам напряжений. Искусственному старению (при 190 °С в течение 10 часов) подвергаются детали, используемые для работы при повышенных температурах (до 200 °С).

Кроме дуралюминов к термически упрочняемым деформируемым сплавам относятся следующие алюминиевые сплавы: ковочные (АК4-1, АК6, АК8 и т. д.), маркируемые буквами АК, и высокопрочные (В95, В96 и т. д.), маркируемые буквой В.

По химическому составу ковочные сплавы близки к дуралюминам, отличаясь от них более высоким содержанием кремния. Детали из ковочных сплавов подвергают закалке от 500–575 °С и старению при 150–165 °С в течение 6–15 часов.

Дополнительное легирование Ni, Fe, Ti повышает температуру рекристаллизации и жаропрочность этих сплавов до 300 °С, что позволяет использовать их при изготовлении поршней, лопаток, дисков осевых компрессоров турбореактивных двигателей и т. п.

Высокопрочные алюминиевые сплавы принадлежат к системе «Аl – Ζn – Мg – Сu» и содержат добавки марганца, хрома, циркония. Эти элементы увеличивают неустойчивость твердого расплава, ускоряют его распад и усиливают старение сплава. Наибольшее упрочнение вызывают закалка с температур 465–475 °С и старение при 140 °С в течение 16 часов. После такой обработки сплав В95 имеет σВ = 569–600 МПа, δ = 9–12 %, 1500 НВ. Сплавы применяют для высоконагруженных деталей, конструкций, работающих в условиях напряжения сжатия.

Основные требования к литейным алюминиевым сплавам – сочетание хороших литейных свойств (высокой жидкотекучести, небольшой усадки, малой склонности к образованию горячих трещин и пористости) с оптимальными механическими и химическими (сопротивление коррозии) свойствами. К литейным относятся сплавы эвтектического состава на основе систем «Al – Si», «Al – Cu», «Al – Mg».

Лучшими литейными свойствами обладают эвтектические сплавы на основе «Al – Si» (силумины) (рис. 6.8), например: АЛ2, АЛ4, АЛ9. Наиболее распространён сплав, содержащий 10–13 % Si (АЛ2), обладающий высокой коррозионной стойкостью, большой плотностью отливок. В структуре содержит эвтектику, состоящую из α-твёрдого раствора кремния в алюминии и кристаллов практически чистого кремния. Кремний при затвердевании эвтектики выделяется в виде грубых кристаллов игольчатой формы, которые играют роль внутренних надрезов в пластичном α-твёрдом растворе. Такая структура обладает низкими механическими свойствами.

Силумины обычно модифицируют натрием, который в виде хлористых и фтористых солей вводят в жидкий сплав в количестве 2–3 % от массы сплава. В этом случае в структуре сплава вместо избыточного кремния появляются кристаллы α-твёрдого раствора. Это приводит к увеличению пластичности и прочности.

 

 

Рис. 6.8. Диаграмма состояния системы «Al–Si»

 

Для легирования силуминов используют магний, медь, марганец, титан. Растворяясь в алюминии, они повышают прочность, твёрдость. Медь улучшает обрабатываемость резанием, титан оказывает модифицирующее действие. Медь и магний, обладая переменной растворимостью в алюминии, способствует упрочнению силуминов при термической обработке, состоящей из закалки и искусственного старения. Температура закалки различных силуминов находится в пределах 515–535 °С, температура старения – 150–180 °С.

Из легированных силуминов наибольшее применение имеют сплавы с добавками магния (АК7ч, где ч – содержание примесей 0,1–0,3 %), магния и марганца (АК9ч). Наибольшее упрочнение вызывает метастабильная β’-фаза (Mg2Si). Легированные силумины применяют для средних и крупных литых деталей ответственного назначения: корпусов компрессора, картеров, головок цилиндров.

Сплавы системы «Al – Cu» характеризуются высокой прочностью при обычных и повышенных температурах, хорошо обрабатываются резанием и свариваются, но (из-за отсутствия эвтектики) обладают плохими литейными свойствами. Сплавы склонны к хрупкому разрушению вследствие выделения по границам зерен грубых частиц θ-фазы: CuAl2 и Al7Cu2Fe, поэтому их применяют в закалённом состоянии, когда эти соединения переведены в твёрдый раствор. Во время нагрева сплава под закалку наряду с растворением θ-фазы из твёрдого раствора выпадают мелкодисперсные частицы фазы Al12Mn2Cu, увеличивающие прочность при обычных и повышенных температурах. После закалки: σВ = 320 МПа, σ0,2 = 180 МПа, 800 НВ.

Сплавы системы «Al – Cu» используют для деталей, работающих при температурах до 300 °С. Так как эти сплавы малоустойчивы против коррозии, то отливки подвергают анодированию, химическому оксидированию и окраске.

Сплавы системы «Al – Mg» обладают высокой коррозионной стойкостью во многих агрессивных средах, обрабатываются резанием и свариваются. Дополнительное легирование бериллием, титаном и цирконием вызывает измельчение зерна и затормаживание процесса естественного старения, приводящего к снижению пластичности и коррозионной стойкости. Термообработка состоит из закалки с охлаждением в масле (40–50 °С). Выдержка при температуре закалки составляет 12–20 часов, что обеспечивает растворение частиц Al3Mg2 в α-твёрдом растворе и получение однородного раствора. Добавление до 1,5 % Ѕi улучшает литейные свойства.

Сплавы системы «Al – Mg» применяют для изготовления деталей, работающих в условиях высокой влажности, в судо-, самолето- и ракетостроении.

7. Неметаллические материалы

Похожие статьи:

poznayka.org