Как оксиды воздействуют на природу и жизнь человека? Оксид гелия


Гелий заставили создать устойчивое химическое соединение

Трехмерная структура соединения Na2He

Artem R. Oganov

Международная группа ученых из МФТИ, Сколтеха, Нанкинского университета и Университета Стоуни Брук под руководством Артема Оганова предсказала и смогла получить в лабораторных условиях стабильное соединение натрия с гелием — Na2He. Подобные соединения могут возникать в недрах Земли и других планет, в условиях очень высокого давления и температуры. Исследование опубликовано в журнале Nature Chemistry, кратко о статье сообщает также пресс-релиз Университета Юты. Следует отметить, что предварительная версия работы была выложена авторами в виде препринта в 2013 году.

Гелий, как и неон, является наиболее химически инертным элементом в таблице Менделеева и практически не вступает в реакции из-за заполненной внешней электронной оболочки, высокого потенциала ионизации и нулевого сродства к электрону. Уже давно ученые пытаются найти его устойчивые соединения, например с фтором (HHeF и (HeO)(CsF)), хлором (HeCl) или литием (LiHe), однако такие вещества существуют ограниченное время. Стабильные соединения гелия существуют (это NeHe2 и He@h3O), однако гелий там практически не влияет на электронную структуру и связан с другими атомами силами Ван-дер-Ваальса. Однако ситуация может измениться, если попытаться работать при высоких давлениях — в таких условиях благородные газы становятся более активными и образуют соединения, например оксиды с магнием (Mg—NG, где NG — Xe, Kr или Ar). Поэтому было решено поискать такие соединения с гелием.

Исследователи провели крупномасштабный поиск возможных стабильных соединений гелия с различными элементами (H, O, F, Na, K, Mg, Li, Rb, Cs и так далее) при помощи кода USPEX (Universal Structure Predictor: Evolutionary Xtallography), разработанного Огановым и его коллегами в 2004 году. Выяснилось, что только натрий образует устойчивое соединение с He при давлениях, доступных для лабораторных экспериментов. Тогда было решено поискать стабильное соединение системы Na-He с минимальной энтальпией образования (т.е. наиболее устойчивые) при разных давлениях. Расчеты показывают, что это будет соединение Na2He. Реакция образования этого вещества возможна при давлениях выше 160 ГПа, при этом она будет экзотермической, т.е. с выделением тепла. При давлениях ниже 50 ГПа соединение будет нестабильным.

Термодинамические характеристики системы Na-He при разных давлениях

Для проверки теоретических расчетов было решено попробовать получить предсказанное соединение при помощи алмазных наковален, нагреваемых лазерным излучением. В них загружались тонкие пластины из натрия, а все остальное пространство заполнялось газообразным гелием. Во время экспериментов ученые снимали Рамановские спектры, кроме того состояние системы контролировалось визуально и при помощи метода дифракции синхротронного рентгеновского излучения. Полученные данные затем сравнивались с предсказанными на основе расчетов.

Кристаллическая структура Na2He при 300 ГПа (a,b) и распределение электронной плотности в нем (c)

Выяснилось, что соединение Na2He имеет гораздо более высокую температуру плавления, чем чистый натрий — выше 1500 К при 140 ГПа. Оно стабильно при давлениях выше 113 ГПа и обладает кристаллической структурой, похожей на трехмерную шахматную доску. Вещество представляет собой электрид, обладающий диэлектрическими свойствами. На основе этих экспериментов было также предсказано существование еще одного соединения с гелием — Na2HeO, с похожей структурой, существование которого еще предстоит проверить.

Это не первое исследование по теоретическому предсказанию новых соединений, проведенное под руководством Артема Оганова. Ранее его группа нашла нового родственника графена, две новых формы оксида алюминия, существующих при высоких давлениях, а также впервые пронаблюдала «склеивание» слоев в сверхпроводнике, которое, как выяснилось, сопровождается потерей его сверхпроводящих свойств.

Александр Войтюк

nplus1.ru

8.1.1. Водород и его соединения. Гелий

Водород, помимо наиболее стабильной молекулы и сольватированного иона H+ существует в атомарном состоянии, в виде иона , молекулярных ионовиИз-за малого радиуса атома энергия связи в молекуле водорода наибольшая из всех атомных гомонуклеарных молекул VIIА и IА групп.

Образование иона H+ сопровождается резким уменьшением эффективного радиуса, изменением кислотно-основных свойств и окислительно-восстановительных потенциалов некоторых соединений в присутствии H+, гидратированием в водных растворах протона с образованием иона гидроксония h4O+. Вакантность 1s-орбитали способствует образованию водородной связи.

Водород следует рассматривать как не имеющий полных аналогов химический элемент, поэтому его помещают либо в первую, либо в седьмую группу. К группе галогенов водород можно отнести из-за легкой замещаемости водорода галогенами в органических соединениях и способности к образованию аниона H√ (гидрид-иона).

Соединения водорода с менее электроотрицательными элементами называют гидридами. Промежуточное значение ЭО (2,1) позволяет водороду образовывать химические соединения с различной степенью полярности химической связи, поэтому их классифицируют следующим образом: ионные (солеобразные) соединения (с s-элементами), ковалентно-полярные (с p-элементами), металлоподобные фазы внедрения (с переходными металлами) (табл. 8.1).

Переход от одного типа соединений к другому совершается постепенно. Так, гидриды меди и цинка занимают промежуточное положение между ионными и ковалентными, а гидриды серебра и золота сходны с гидридами переходных металлов.

Более подробно соединения с водородом будут расмотрены в обзорах соответствующих элементов.

Второй элемент первого периода √ гелий √ формально входит в VIIIА подгруппу. Гелий √ типичный инертный элемент, его неспособность вступать в химическое взаимодействие с другими элементами предопределена устойчивостью его электронной конфигурации . К типично химическим соединениям можно отнести лишь молекулярный иони гидрид гелия HeH с электронной формулойи кратностью связи 0,5.

8.1.2. Водородные соединения

Водородные соединения s-элементов MH и Mh3 называют солеподобными гидридами из-за их сходства с галогенидами. Они характеризуются ионным строением кристаллической решетки и высокими температурами плавления. Расплавы этих соединений √ электролиты; при их электролизе водород выделяется на аноде (2H√ √ 2e√ = h3). При взаимодействии с водой реакция протекает по окислительно-восстановительному механизму практически необратимо:

Cтандартный потенциал системы B указывает на большую склонность иона H√ отдавать электрон, что делает гидриды хорошими восстановителями.

Все солеобразные гидриды обладают высокой реакционной способностью:

Гидриды бериллия и магния являются переходными между ионными и ковалентными и дают неорганические полимеры.

8.1.3. Оксиды, пероксиды и гидроксиды

При сжигании в атмосфере кислорода щелочных металлов образуются пероксиды M2O2. Только литий при обычных условиях сгорает в кислороде до Li2O. Начиная с калия, наряду с M2O2, образуются надпероксиды (KO2, RbO2, CsO2) и озониды (KO3, CsO3).

Щелочноземельные элементы при взаимодействии с кислородом при аналогичных условиях дают оксиды, пероксиды получаются труднее, чем для щелочных элементов. Так, пероксид бария BaO2 получают нагреванием на воздухе оксида бария при 700 ╨C. Пероксиды остальных металлов этой группы получают ╚мокрым╩ способом при действии пероксида водорода на гидроксиды:

Оксиды s-элементов имеют основной характер, что подтверждается характером их взаимодействия с кислотными оксидами:

Исключение, как и следует ожидать, составляет BeO √ он амфотерен:

Пероксиды проявляют окислительно-восстановительную двойственность за счет пероксид-иона :

Окислительные свойства пероксидов выражены сильнее, чем восстановительные. Пероксиды и надпероксиды, как сильные окислители, легко разлагаются разбавленными кислотами и водой:

Последняя реакция используется для получения кислорода в подводных лодках и космических кораблях.

Гидроксиды s-элементов получают при взаимодействии оксидов с водой. Большой ионный радиус s-элементов (табл. 8.1) делает их гидроксиды сильными основаниями, а увеличение радиуса в группе сверху вниз приводит к усилению основности гидроксидов от Li к Cs и от Mg к Ba; амфотерен только Be(OH)2.

studfiles.net

Гелий

Гелий

2

He

2
ГЕЛИЙ
4,0026
1s2

Гелий – подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях – ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия – альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов – то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью – показать, что элемент №2 – элемент весьма необычный.

Земной гелий

Гелий – элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер – 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы – высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – 4Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, – это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой – самородные металлы, магнетит, гранат, апатит, циркон и другие, – прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко – десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений – явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·1014 м3; судя же по вычислениям, его образовалось в земной коре за 2 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий – легкий газ и, подобно водороду (хотя и медленнее), не улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся – старый улетучивался в космос, а вместо него в атмосферу поступал свежий – «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли – в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий – редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе – 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.

Рис. 1. Кривые распространенности элементов на Земле (вверху) и в космосе.«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16О, 20Ne, 24Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные – и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим – 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования – план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты – Юпитер V – армады кибернетических машин на криотронах (о них – ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость – необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона – конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней – реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле – 26,7 МэВ на один атом гелия.

Реакция синтеза гелия – основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3Be, 12C, 16O, 20Ne, 24Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами – элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый...

Атом гелия (он же молекула) – прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию – 78,61 МэВ. Отсюда – феноменальная химическая пассивность гелия.

За последние 15 лет химикам удалось получить более 150 химических соединений тяжелых благородных газов (о соединениях тяжелых благородных газов будет рассказано в статьях «Криптон» и «Ксенон»). Однако инертность гелия остается, как и прежде, вне подозрений.

Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики – меньше, чем в любом другом веществе. Отсюда – самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью – способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его ныне немало – сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком – жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий – идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения – при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле – криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена – частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 – 2,4·10–21 секунды, гелия-6 – 0,83 секунды, гелия-8 – 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше – 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый – в 1926 г.

Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких – быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни – довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался. 

himiya.okis.ru

8.1.1. Водород и его соединения. Гелий

Водород, помимо наиболее стабильной молекулы и сольватированного иона H+ существует в атомарном состоянии, в виде иона , молекулярных ионовиИз-за малого радиуса атома энергия связи в молекуле водорода наибольшая из всех атомных гомонуклеарных молекул VIIА и IА групп.

Образование иона H+ сопровождается резким уменьшением эффективного радиуса, изменением кислотно-основных свойств и окислительно-восстановительных потенциалов некоторых соединений в присутствии H+, гидратированием в водных растворах протона с образованием иона гидроксония h4O+. Вакантность 1s-орбитали способствует образованию водородной связи.

Водород следует рассматривать как не имеющий полных аналогов химический элемент, поэтому его помещают либо в первую, либо в седьмую группу. К группе галогенов водород можно отнести из-за легкой замещаемости водорода галогенами в органических соединениях и способности к образованию аниона H√ (гидрид-иона).

Соединения водорода с менее электроотрицательными элементами называют гидридами. Промежуточное значение ЭО (2,1) позволяет водороду образовывать химические соединения с различной степенью полярности химической связи, поэтому их классифицируют следующим образом: ионные (солеобразные) соединения (с s-элементами), ковалентно-полярные (с p-элементами), металлоподобные фазы внедрения (с переходными металлами) (табл. 8.1).

Переход от одного типа соединений к другому совершается постепенно. Так, гидриды меди и цинка занимают промежуточное положение между ионными и ковалентными, а гидриды серебра и золота сходны с гидридами переходных металлов.

Более подробно соединения с водородом будут расмотрены в обзорах соответствующих элементов.

Второй элемент первого периода √ гелий √ формально входит в VIIIА подгруппу. Гелий √ типичный инертный элемент, его неспособность вступать в химическое взаимодействие с другими элементами предопределена устойчивостью его электронной конфигурации . К типично химическим соединениям можно отнести лишь молекулярный иони гидрид гелия HeH с электронной формулойи кратностью связи 0,5.

8.1.2. Водородные соединения

Водородные соединения s-элементов MH и Mh3 называют солеподобными гидридами из-за их сходства с галогенидами. Они характеризуются ионным строением кристаллической решетки и высокими температурами плавления. Расплавы этих соединений √ электролиты; при их электролизе водород выделяется на аноде (2H√ √ 2e√ = h3). При взаимодействии с водой реакция протекает по окислительно-восстановительному механизму практически необратимо:

Cтандартный потенциал системы B указывает на большую склонность иона H√ отдавать электрон, что делает гидриды хорошими восстановителями.

Все солеобразные гидриды обладают высокой реакционной способностью:

Гидриды бериллия и магния являются переходными между ионными и ковалентными и дают неорганические полимеры.

8.1.3. Оксиды, пероксиды и гидроксиды

При сжигании в атмосфере кислорода щелочных металлов образуются пероксиды M2O2. Только литий при обычных условиях сгорает в кислороде до Li2O. Начиная с калия, наряду с M2O2, образуются надпероксиды (KO2, RbO2, CsO2) и озониды (KO3, CsO3).

Щелочноземельные элементы при взаимодействии с кислородом при аналогичных условиях дают оксиды, пероксиды получаются труднее, чем для щелочных элементов. Так, пероксид бария BaO2 получают нагреванием на воздухе оксида бария при 700 ╨C. Пероксиды остальных металлов этой группы получают ╚мокрым╩ способом при действии пероксида водорода на гидроксиды:

Оксиды s-элементов имеют основной характер, что подтверждается характером их взаимодействия с кислотными оксидами:

Исключение, как и следует ожидать, составляет BeO √ он амфотерен:

Пероксиды проявляют окислительно-восстановительную двойственность за счет пероксид-иона :

Окислительные свойства пероксидов выражены сильнее, чем восстановительные. Пероксиды и надпероксиды, как сильные окислители, легко разлагаются разбавленными кислотами и водой:

Последняя реакция используется для получения кислорода в подводных лодках и космических кораблях.

Гидроксиды s-элементов получают при взаимодействии оксидов с водой. Большой ионный радиус s-элементов (табл. 8.1) делает их гидроксиды сильными основаниями, а увеличение радиуса в группе сверху вниз приводит к усилению основности гидроксидов от Li к Cs и от Mg к Ba; амфотерен только Be(OH)2.

studfiles.net

Воздух гелий - Справочник химика 21

    Воздух Гелий Черная — Сжатый воздух Белая [c.224]

    Азот Аргон Аммиак Водород Воздух Гелий Кислород Оксид углерода [c.28]

    Газ-носитель подвижная фаза, В качестве газа-носителя применяют азот, воздух, гелий, водород и реже другие газы, не вступающие в реакцию с исследуемыми газами и наполняющими колонку сорбентом. В качестве наполнителя колонок (неподвижная фаза) могут быть применены указанные ранее адсорбенты — активированный уголь, молекулярные сита (искусственные цеолиты), силикагели, окись алюминия — или специальные жидкости типа высококипящих углеводородов, нанесенные на поверхность малоактивного адсорбента. В Советском Союзе в качестве такового применяют обычно измельченный инзенский кирпич, выпускавшийся ранее под маркой ИНЗ-600, или вновь разработанный диатомовый носитель марки ТНД-ТС-М. За рубежом выпускают аналогичные адсорбенты под различными марками (стерхамол, хромосорб и др.) Такие адсорбенты, на которые наносится тонкий слой жидкости, назьшают носителями (не смешивать с газом-носителем). Их роль состоит в том, чтобы создать большую поверхность для жидкости, являющейся активной неподвижной фазой. Применение в газовой хроматографии вместо активных адсорбентов жидкостей, обладающих различной растворяемостью газов, было предложено Джеймсом и Мартином в 1952 г., что резко увеличило возможности и улучшило метод газовой хроматографии. [c.67]

    Инертные газы получают в основном при фракционированном сжижении воздуха. Гелий широко применяется в ядерной технике, металлургии и как низкотемпературная жидкость аргон — в основном в металлургии. Применение неона основано на способности при прохождении электрического тока в разрядных (неоновых) трубках испускать свет с характерными спектральными линиями (красный свет). [c.410]

    Вода Воздух Гелий-4 [c.54]

    При газоадсорбционном методе хроматографии в качестве газа-носителя применяют воздух, гелий, азот и другие газы, в качестве адсорбента — твердые измельченные вещества активированный уголь, оксид магния, силикагель, алюмогель и др. Для измерения массы потока вещества подвижной фазы используют ротаметр. [c.320]

    Газо-адсорбционная хроматография—разделение смеси газов на твердом сорбенте. В качестве сорбента (неподвижной фазы) используют активное дисперсное твердое вещество активный уголь, силикагель, цеолиты и др. В качестве подвижной фазы, в которой содержится разделяемая смесь газов, применяют газ-носитель аргон, воздух, гелий, водород и др. Исследуемая смесь газов, передвигаясь вместе с газом-носителем вдоль колонки, разделяется на отдельные компоненты вследствие различной их адсорбируемости. [c.331]

    Если газовая смесь бинарная (воздух-гелий) и ее компоненты имеют разные теплопроводности, то, измеряя изменение теплопроводности смеси, можно определить появление пробного газа (например, гелия) в потоке воздуха. На этом принципе основан течеискатель для определения мест нарушения герметичности различных систем при заполнении их пробным газом под избыточным давлением. [c.554]

    Можно полагать, что порозность слоя будет находиться в какой-то сложной зависимости от числа псевдоожижения. Это положение было проверено нами экспериментально на кварцевом песке и корунде, псевдоожижаемых воздухом при разных температурах, а также в опытах с кварцевым песком ср = -=225 мкм, псевдоожижаемых воздухом, гелием и углекислотой. [c.80]

    Приводятся экспериментальные данные по расширению псевдоожиженных слоев кварцевого песка с эквивалентными диаметрами частиц 1420 630 280 и 225 мкм, а также корунда с аф=95 и 48 мкм в широком диапазоне скоростей фильтрации при нагревании слоя до 800 °С. Слои псевдоожижались воздухом, гелием и углекислотой в двух колоннах D = 64 и 37 мм. [c.188]

    Чистоту того или иного редкого газа можно определять и другими описанными в настоящей главе приборами (например, изображенным на фиг. 99, й). Анализируемый гелий или неон пропускается через уголь, предварительно откачанный и охлаждаемый жидким воздухом. Гелий или неон полностью откачивается. После этого жидкий воздух удаляют и из угля откачивают задержавшиеся в нем газы, представляющие собой примеси, имевшиеся в гелии или в неоне. [c.267]

    М. Лева и др. [35] провели опыты с песком (с1 = 0,04 -ь 0,155.иж) и катализатором Фишера (й = 0,042 0,11 мм). В качестве теплоносителя применялись воздух, гелий и углекислый газ с температурой 180° С. Скорость воздуха была 0,07—0,2 ж/се/с. В ре- [c.102]

    Аммиак Аргон Ацетилен Ацетон Бензол Бутан Бутан Вутен Вода Водород Воздух Гелий Гексан Г ептан Двуокись углерода Диэтиламин. ... Закись азота. ... [c.251]

    Давление, кГ/ш Воздух Гелий  [c.77]

    Сжатый воздух Гелий [c.246]

    Воздух Гелий —окись углерода 151 104 1056 2,9 [c.91]

    Сжатый воздух Гелий Закись азота Кислород Кислород медицинский Нефтегаз Бутилен Сероводород Сернистый ангидрид Углекислота [c.796]

    Радон до сих пор получают из радиевых руд, а неон, аргон, криптон и ксенон — дистилляцией жидкого воздуха. Гелий обнаруживается в некоторых месторождениях природных газов. Такие месторождения известны только в Северной Америке, где природный газ содержит около 16% гелия, а остальное составляют азот и углеводороды. Одно месторождение в Аризоне дает 8,5% Не, 90% N2, 1% СО2, 0,5% Аг и менее 0,1% углеводородов. Этот газ сжижают, получая газообразный остаток, который представляет собой Не приблизительно 99%-ной чистоты. Газ пропускают над активированным углем и получают гелий с чистотой выше 99,999% (в объемных или мольных процентах). [c.334]

    Песок, уголь, катализатор (с(=0,050,97 мм) воздух, гелий. Колонки с й = = 63,5 и 101,6 мм [c.149]

    Карбид кремния, окись алюминия, двуокись кремния, силикагель ( =0,088-=-0,249 мм) воздух, гелий, углекислый газ, этан. Колонка с Д=50,8 мм [c.149]

    В значительных количествах гелии применяют в космической технике для вытеснения жидкого кислорода и водорода в ракетах, Большое значение г елги ) имеет как теплоноситель на атомных электростанциях он практически не вступает нм в химические, ни в чдерные реакции и характеризуется высокой теплопроводностью, чизкнмн вязкостью и плотностью. В больших количествах его используют для создания инертной атмосферы/при дуговой сварке — он защищает шов от контакта с воздухом. Гелий является наиболее эффективным и безопасным наиолиптелем дирижаблей, а также [c.505]

    Б. г. (кроме Не) получают как побочные продукты при произ-ве N2 и О2 из воздуха Гелий выделяют из подземных гелионосных газов. Используют Б. г. в кач-ве инертной среды в металлургии, атомной и ракетной технике, в произ-ве полупроводниковых материалов и др., как наполнитель в электронике, электротехнике и др., рабочее в-во в лазерной технике. [c.297]

    На базе электрохимического метода разработана серия приборов Оникс — для определения кислорода, водорода и паров воды в азоте и инертных газах в диапазоне 210 -5-10 мол. % Циркон — для определения кислорода в инертных газах и азоте в диапазоне от 10 до 100 мол. % Агат — для определения кислорода от 5-10 до ЮОмол. % Топаз — для определения кислорода в диапазоне 15 5 мол. % Лазурит — для оиределения кислорода и водорода в инертных газах и азоте в диапазоне от 10 " до 10 мол. %. Создана серия портативных газосигнализаторов с использованием в качестве датчиков электрохимических сенсоров ИВГ-1 — для измерения микровлажности в азоте, аргоне, воздухе, гелии, кислороде и их смесях до 5-10 г/м (-90 °С), ТГС-3 —для контроля содержания метана (модификация ТГС-З-МИ в диапазоне 0-3 об. %), кислорода (модификация ТГС-З-КИ в диапазоне 28-18 об. %), аммиака (модификация ТГС-З-АИ в диапазоне 2-10 -1 10 мол. %). [c.926]

    Была исследована удельная поверхность порошков, определяемая по формулам (5) и (6), в зависимости от среднего давления газа, при котором происходила фильтрация. На рис. 2, 3 приведены данные для А12О3, алмаза и слюды нри фильтрации через слой этих порошков воздуха, гелия и метана. Аналогичный характер графиков был получен и для других порошков. [c.120]

    Так как величина гетерозаряда уменьшается при откачивании воздуха (форвакуумпым насосом в течение 3 мин при температуре образца 113 К) и эффект не регистрируется при замене воздуха гелием, то наблюдающийся гетерозаряд следует связать с молекулами адсорбированного азота и кислорода. В пользу этого говорит и тот факт, что в значительном количестве эти газы поглощаются при низких температурах. [c.284]

    Спектр гелия был открыт в 1868 г. Впервые гелий был выделен английским химиком У. Рамзаем в 1895 г. Выделение гелия из природного газа обходится во много раз дешевле, чем из воздуха. Гелий получают после глубокого охлаждения и практически полной конденсации всего газа, за исключением водорода и частично азота. Водород превращается в воду при пропускании смеси под окисью меди, нагретой до 400 °С. Технически чистый гелий, содержащий 1— 1,5% азота, получается при давлении 15 МПа и охлаждении газа жидким азотом, кипящим под вакуумом при температуре —200ч-Н—203 °С. [c.125]

    Для регистрации фототока может служить или стрелочный микроамперметр чувствительностью 10 а на деление шкалы, или самопишущий потенциометр типа мер, ПСР или ЭПП-09, чувствительностью 10 мв на всю шкалу, вход которого зашунтирован сопротивлением около 200 ом. Фотоприставка вА1есте со спектрографом ИСП-51 или монохроматором УМ-2 используется для большинства задач спектрального анализа газов (определение неоно-гелиевой смеси в воздухе, гелия в неоне, неона в гелии, азота в аргоне, азота и водорода в гелии). В сочетании со спектрографом с дифракционной решеткой ДФС-3 фотометр применяется при анализе изотопного состава водорода. [c.111]

    На рис. 83 даны градуировочные кривые для анализа аргона и кислорода в воздухе, полученные при разбавлении исходной смеси воздуха гелием в 80-кратном размере. При определении кислорода в качестве линий сравнения могут быть использованы как линии атомар- [c.216]

    Дальнейшее увеличение чувствительности ГЭУК-21 может быть достигнуто применением в качестве газа-иосителя водорода или гелия, обладаю-пщх высокой теплопроводностью. Легко показать [4], что, заменив воздух гелием ири прочих равных условиях, ток накала для достижения той же температуры питц накала необходимо увеличить примерно в 2—2,5 раза. На рис. 4, а, б и в показаны хроматограммы, снятые на ГЭУК-21, ток накала которого увеличен в 1,5 (600 лш) и в 2 (800 лт) раза против обычного (400 лш.) при продувке колонок гелием . К сожалению, значительное содержание воздуха в смеси не позволяло при наших опытах отделить пропан от пропилена. Однако полученные пики бутана и изо-иептана показывают резкое увеличение чувствительности при возрастании тока накала. В табл. 2 ириведены результаты расчета чувствительности детектора ГЭУК-21 по хроматограммам 4, а и 4, б. [c.311]

    Неконденснрующиеся компоненты воздуха — гелий и неон — собираются в верхней части конденсатора 7 и непрерывно даляются оттуда. При накапливании [c.409]

    Аналоги аргона все найдены, как упомянуто выше, в воздухе, а именно в его азоте, но они сопровождают азот и аргон также в указанных минералах, подобных клевеиту, и гелия Не = 4,0 получен впервые именно из клевеита, при нагревании его с серною кислотою, Рамзаем в 1895 г. История гелия, однако, началась гораздо ранее его получения и ему даже дано было ранее того название, так как, судя по спектру солнца, как объяснено в главе 13, Локиер предугадал элемент, дающий ярко-светложелтую линию (длина волны 587,0 тысячных микрона) и более слабую зеленую (с длиною волны 508), судя по спектральным явлениям, исследованным в солнечных выступах (протуберанцах). Отделенный, как аргон, от азота и других подмесей, гелий выделяется из смеси с другими аргоновыми газами на основании того, что он легче их всех, а потому проникает чрез пористые перегородки в наибольшем количестве, а при действии холода, даже развиваемого жидким водородом, не превращается в жидкое состояние [167] если же гелий смешан с другими аргоновыми газами, то при их сжижении растворяется в них, а такой раствор при —250° (жидкий водород) выделяет в пустоту почти один гелий. Плотность гелия лишь в 2,0 раза превосходит плотность водорода, так что после него это наиболее легкий газ. В других отношениях гелий совершенно сходствует с аргоном, а неон Ne = = 19,9, сопровождающий в воздухе гелий и имеющий плотность 9,95, отличается (и отделяется) только тем, что сжижается в холоде, доставляемом жидким воздухом, и прн уменьшенном давлении остается жидким при температуре сжиженного водорода, кипит ниже —186°, (т.-е. летучее аргона), а спектр дает с яркими красно-оранжевыми линиями (650, 641 тысячных микрона). В части аргоновых газов, подверженных сжижению, и в тех частях сжиженного воздуха, которые испаряются наиболее трудно, находятся еще два газа, считаемые, как аргон, простыми телами, но кипящие выше аргона, а именно криптон Кг = 81,8 и ксенон Хе = 128, открытые Рамзаем и Траверсом. У первого спектр зе-лено-желтого цвета (длины волн наиболее ярких линий 558, 477, 47ч и 450 тысячных микрона), а у второго — голубого цвета (длины волн 492, 481,474,467,463), плотность же у криптона 40,6 и у ксенона 63,5, т.-е. эти газы много тяжелее всех других, встречающихся в атмосфере (напр., для СО- плотность по водороду = 22). Однако их содержание в атмосфере столь мало, что нужна особая настойчивость даже для того, чтобы извлечь хоть сколько-либо такого газа, как ксенон, так как из 600 миллионов объемов воздуха удалось получить лишь около [c.171]

    При осуществлении анализа смеси газов (рис. 1) через хроматографическую колонку с сорбентом непрерывно пропускается какой-либо плохо сорбирующийся газ (азот, воздух, гелии), получивший название газа-носителя. Через определенные промежутки времени в поток газа дозатором 1 впрыскивается доза анализируемой газовой смеси. Смесь увлекается газом-носителем в колонку 2, заполненную сорбентом. Здесь происходит разделение смеси на полосы, в которых [c.310]

chem21.info

Оксиды: интересные факты

Оксидом является соединение, образованное двумя химическими элементами, один из которых кислород. Практически все элементы Периодической системы Менделеева Д. И. способны образовывать оксиды. Но оксиды Гелия, Неона, Аргона не получены. Наиболее известным и широко распространённым оксидом является вода. Она повсюду. Даже радуга – это результат преломления солнечных лучей в каплях воды.

Формулы оксидов

Элемент с постоянной валентностью образует один оксид. Например, у двухвалентного кальция оксид: CaO. Если у элемента переменная валентность, то он способен образовывать несколько оксидов. Примером являются окиды хрома: СrO, Сr2O3, СrO3.

Формула определяется в зависимости от валентностей составляющих элементов. Приведём пример для оксида серы. 1.Кислород двухвалентен. Сера черырёхвалентна. Пишем валентности над символами IV II химических элементов: SO. 2. Определяем наименьшее число, которое делится на 2 и 4. Таким числом является 4. 3. Определяем индекс возле серы: делим полученное число на значение валентности 4/4=1. Значит, индекс возле серы не пишем. 4. Этим же методом находим индекс возле кислорода: 4/2=2. 5. Получили формулу: SO2.

Интересное об оксидах

Причиной эффекта собачьей пещеры в Италии является оксид углерода СО2. Он тяжелее воздуха, поэтому получается так, что газ в пещере как раз покрывает собачью голову. Невысокие животные гибнут от удушья за несколько минут. А за счёт своего роста человек может легко пройти по ней.

В 1890 году парусное судно «Малборо» направлялось в Англию из Новой Зеландии. На борту было 23 члена экипажа и несколько пассажиров. В Англию судно не прибыло. Лишь через 23 года корабль появился вновь возле Огненной Земли. Шёл на всех парусах и оказался абсолютно не повреждённым. Оказывается, что причиной гибели людей стало извержение вулкана на острове Мартиника. Вулканические газы содержали 1,6% СО.

СО не растворяется в воде, не обладает запахом, определить его сложно. А на людей и животных воздействует, как яд. При этом для некоторых видов рыб он не опасен, хотя китоподобные могут погибнуть и при очень небольшой концентрации газа в воздухе. Холоднокровные, например жабы, могут переносить концентрацию СО в 1000 раз большую, чем теплокровные.

Появление кислот в атмосфере

Кислотные дожди появляются, когда с атмосферным кислородом и водяным паром соединяются оксиды серы и азота. Эти оксиды выбрасываются в окружающую среду металлургическими предприятиями, электростанциями, автомобильным транспортом. Полученные таким образом кислоты имеют вид дождя и разносятся ветром.

Оксид серы выбросов реагирует с водой, в результате образуется сернистая кислота: SO2+h3O=h3SO3. И взаимодействуя с кислородом воздуха, она частично превращается в серную кислоту: 2Н2SO3+О2=2Н2SO4.

Оксиды азота появляются в атмосфере в результате реакций азота и кислорода. Взаимодействие осуществляется при высоких температурах сгорания топлива N2+O2=2NO Но образуемое соединение быстро взаимодействует с кислородом:    2NO+O2=2NO2, А полученный оксид азота реагирует с влагой из окружающей среды 2NO2+Н2О=НNO2+НNO3.

Сфера влияния кислотных дождей

Таким образом в воздухе появляются примеси кислот: серной, сернистой, азотной и  азотистой. И эти примеси с осадками попадают на землю. Кислотные дожди негативно сказываются на росте растений, здоровье животных и людей.

В 1952 году непрозрачный туман охватил улицы Лондона, в результате чего погибло 4000 жителей. Частички смога раздражали дыхательные пути, а в лёгких появлялась слизь. Многие люди получили сердечные приступы с предшествующим тяжёлым кашлем. По оценкам учёных тот туман был более кислым, чем лимонный сок. Затем правительством было запрещено сжигать в городе топливо, образующее большое количество дыма. Это было сделано во избежание образования серной и азотной кислот.

Урожайность многих культур уменьшается на 3-8%, потому что листья повреждаются кислотами. Изменяется состав воды в озёрах и ставках. В результате погибает рыба и многие виды насекомых. Исчезают птицы и животные, которые ими питаются. У улиток истончается карбонатная раковина, которая защищает их. В результате они гибнут. Также разрушаются ракушки обитателей водоёмов. Это негативно сказывается на экосистемах.

Кислотные дожди закисляют почвы. Большинству растений это не по нраву. Существует совсем немного растений, способных расти на кислых почвах без ущерба для себя. Такое растение - хвощ полевой. Из-за жёсткости им не питаются травоядные животные.

Кроме того кислотные дожди увеличивают коррозию металлов, разрушают мрамор и известняк.

После того, как был определён вред подобных дождей, в развитых странах стали устанавливать улавливатели, не пропускающие кислотные оксиды в воздух.

Основные, кислотные, амфотерные оксиды и их свойства, получение

Получение оксидов происходит с помощью различных способов. Из наиболее простых 2h3 + O2 = 2h3O 

Существуют основные и кислотные оксиды. Они различаются тем, что при взаимодействии оксида с водой образуется либо кислота, либо основание. Эти реакции относят к реакциям соединения:

СаО+Н2О=Са(ОН)2.

1. Основные оксиды и кислотные оксиды способны взаимодействовать между собой: СаО+SO3=CaSO4 2. Основные оксиды взаимодействуют с кислотами. Образуются соответствующая соль и вода: CaO+h3SO4=CaSO4+h3O 3. Образуются соответствующая соль и вода и при взаимодействии кислотных оксидов со щелочами: СО2+2NaOH=Na2CO3+h3O.

В химии существуют вещества, проявляющие двойственность свойств. Это подобные двуликому Янусу амфотерные оксиды. Выступают как в качестве кислотных, так и в качестве основных оксидов. Поэтому со щелочами они проявляют особенности, характерные для кислотных оксидов, а с кислотами – основных.

Применение оксидов

Известно около 300 оксидов. Из железных руд, содержащих оксиды железа, получают железо. Песок, состоящий преимущественно состоит из SiO2, используют при производстве стекла.

Некоторые оксиды являются основой для красок: ZnO – белой, Fe2O3 – коричневой, Cr2O3 – зелёной. А природные и искусственные кристаллы оксидов алюминия, окрашенные примесями, используют для изготовления ювелирных украшений.

Эти соединения могут как дарить жизнь, так и разрушать её. То есть значение оксидов в жизни человека и природе является довольно существенным.

 

 

www.himikatus.ru

Гелий в окиси бериллия - Справочник химика 21

    Ве 1800 Be не пропитывает окись бериллия, и, по-видимому, с ней не реагирует (гел) [c.411]

    Окись бериллия можно нагревать в среде гелия до 2000° С без заметной потери в весе в результате улетучивания. [c.110]

    К другой пробе радиоактивного газа была добавлена в небольшой пропорции окись углерода, и смесь пропускалась над раскаленной закисью меди. Выходящий газ был радиоактивен, но при пропускании через раствор едкого кали его радиоактивность исчезала в данном случае полностью. Эти результаты исключают (а) литий и бериллий, соединения которых трудно летучи (Ь) бор в форме летучих гидратов, так как их продукт окисления — трех-окись бора—является нелетучим (с) азот и кислород, которые не абсорбировались бы щелочью. Радиоактивный элемент не может быть, конечно, гелием, так как он не был бы тогда удален раствором едкого кали. Наконец, к пробе газа были добавлены окись углерода и двуокись азота, смесь пропускалась над раскаленной окисью меди а потом через концентрированный раствор перман- [c.35]

    Наряду с усовершенствованием основкого электролитического метода, электролиза хлоридов, продолжаются поиски и других вариантов. В частности, очень заманчиво вести электролиз окиси бериллия. Для этой цели был предложен электролит, состоящий из ВеО и растворителя — смеси BeFa и LiF. Электролиз ведут в атмосфере гелия. В соответствии с электродными потенциалами на аноде выделяется кислород, т. е. в процессе электролиза расходуется окись бериллия. [82]. [c.215]

    В некоторых кристаллах атомы располагаются так, что оставляют по всему кристаллу сквозные пустоты, достаточно большие для прохождения молекул некоторых газов и жидкостей. Типичные кристаллы такого типа будут описаны в последующих главах. Минерал берилл, ВезА1251вО,8, часто содержит включения гелия, проникшего, вероятно, этим путем группа минералов, называемых цеолитами, характеризуется тем, что абсорбирует такие газы, как аммиак, окись углерода, а также посторонние ионы (см. стр. 554). [c.146]

    Все гидроокиси щелочных и щелочноземельных металлов могут получаться при действии воды на металл или окись в случае щелочных металлов эта реакция протекает очень бурно. Литий по многим свойствам похож на щелочноземельные, а не иа щелочные металлы. Например, если сжигать литий в избытке кислорода, то образуется нормальная окись Ь1зО, тогда как другие щелочные металлы образуют Ма,0,, КО,, РЬО, и СбОз- Далее, ЫОН разлагается до окисла при красном калении (сравнить с кальцием и т. д.), а NaOH и гидроокиси других щелочных металлов можно возгонять без потерн воды. Гидроокись лития растворяется в воде только до содержания 4 моля на литр при 10°С, тогда как растворимость НаОН достигает 12 молей на литр. Подобно тому, как Ь)ОН ПО многим свойствам напоминает гидроокиси щелочноземельных металлов, гидроокись бериллия имеет много общих свойств с А1 (ОН)з, н поэтому ее следует отнести скорее во вторую группу, чем в первую. Она осаждается при прибавлении гидроокиси щелочного металла к раствору бериллиевой солн в виде геля, растворяющегося в избытке щелочи. Оба эти свойства являются характерными для многих гидроокисей второй группы. Гидроокись магния также имеет тенденцию к образованию слизеподобного осадка, а гидроокиси кальция, стронция и бария можно легко получить в кристаллическом виде. Гидроокиси магния, кальция, стронция и бария значительно [c.397]

chem21.info