Ремонт компьютерного блока питания ATX. Компьютерный блок питания схема


Ремонт компьютерного блока питания ATX

Вчера сидел испытывал Зарядное устройство на микроконтроллере, сделанный на основе ATX все работало пока не начал он пищать и резко без всяких признаком погиб смертью храбрых. При первом осмотре не смог обнаружить неисправность и тут я полез у googlа спрашивать и вот что он мне выдал.

 

mini

Схема ATX/AT

Рис.1 Типовая схема БП ATX

Проверка высоковольтной части блока питания ATX

Для начала проверяем: предохранитель, защитный терморезистор, катушки, диодный мост, электролиты высокого напряжения, силовые транзисторы Т2, Т4, первичную обмотку трансформатора, элементы управления в базовой цепи силовых транзисторов. Первыми обычно сгорают силовые транзисторы. Лучше заменить на аналогичные: 2SC4242, 2SC3039, КТ8127(А1-В1), КТ8108(А1-В1) и т.п. Элементы в базовой цепи силовых транзисторов.(проверить резисторы на обрыв). Как правило, если сгорает диодный мост (диоды звонятся накоротко), то соответственно от поступившего в схему переменного тока вылетают электролиты высокого напряжения. Обычно мост - это RS205 (2А 500В) или хуже. Рекомендуемый - RS507 (5А 700В) или аналог. Ну и последним всегда горит предохранитель. И так: все нерабочие элементы заменены. Можно приступить к безопасным испытаниям силовой части блока. Для этого понадобится трансформатор с вторичной обмоткой на 36В. Подключаем как показано на Рис.2. На выходе диодного моста должно быть напряжение 50..52В. Соответственно на каждом электролите высокого напряжения будет половина от 50..52В. Между эмиттером и коллектером каждого силового транзистора также должна быть половина от 50..52В.

 силовая часть AT ATX

Проверка источника дежурного питания

Источник дежурного питания служит для питания TL494CN и +5VSB. Как правило выходят из строя Т11, D22, D23, C30. Также следует проверить первичные и вторичную обмотки трансформатора.

дежурное питание ATX

Проверка схемы управления

Для этого понадобится стабилизированный блок питания 12В. Подключаем к схеме испытуемого ИБП как показано на схеме рис.1 и смотрим наличае осциллограмм на соответсвующих выводах. Показания осциллографа снимать относительно общего провода.

Проверка TL494

Проверка силовых транзисторов

Проверку режимов работы в принципе можно и не делать. Если первые два пункта пройдены, то на 99% можно считать БП исправным. Однако, если силовые транзисторы были заменены на другие аналоги или если вы решили заменить биполярные транзисторы на полевые (напрмер КП948А, цоколёвка совпадает), то необходимо проверить как транзистор держит переходные процессы. Для этого необходимо подключить испытуемый блок как показано на рис.2. Осциллограф отключить от общего провода! Осциллограммы на коллекторе силового транзистора измерять относительно его эмиттера (как показано на рис.5, напряжение будет меняться от 0 до 51В). При этом процесс перехода от низкого уровня к высокому должен быть мгновенным (ну или почти мгновенным) то во многом зависит от частотных харрактеристик транзистора и демпферных диодов (на рис.5 FR155. аналог 2Д253, 2Д254). Если переходной процесс происходит плавно (присутствует небольшой наклон), то скорее всего уже через несколько минут радиатор силовых транзисторов очень сильно нагреется. (при нормальной работе - радиатор длжен быть холодный).

осциллограммы AT ATX

Проверка выходных параметров блока питания

После всех вышеперечисленных работ необходимо проверить выходные напряжения блока. Нестабильность напряжения при динамической нагрузке, собственные пульсации и т.п. Можно на свой страх и риск воткнуть испытуемый блок в рабочую системную плату или собрать схему рис. 6.

напряжение в ATX

Данная схема собирается из резисторов ПЭВ-10. Резисторы монтировать на алюминиевый радиатор (для этих целей очень хорошо подходит швеллер 20х25х20). Блок питания без вентилятора не включать! Также желательно обдувать резисторы. Пульсации смотреть осциллографом непосредственно на нагрузке (от пика до пика должно быть не более 100 мВ, в худшем случае 300 мВ). Вообще не рекомендуется нагружать БП более 1/2 заявленной мощности (например: если указано, что БП 200 Ватт, то нагружать не более 100 Ватт).

В дополнение ко всему выше написаному предлагаю скачать отличную подборку принципиальных схем компьютерных блоков питания ATX. Более 35 схем находятся в архиве. Многие производители копируют друг у друга блоки питания, поэтому есть шанс наткнуться на ту схему, которую вы ищете. Принципиальные схемы БП таких фирм как: Codegen, Microlab, InWIN, Power Link, JNC, Sunny, и много других. Так же в архиве Вы найдете информацию по ремонту компьютерных БП.

Профессиональный ремонт

Скачать архив со схемами БП можно здесь.

 

shemu.ru

принципы работы и основные узлы

… пост о блоках питания. И действительно: мало кто обращает внимание при покупке домашнего компьютера на данный, не маловажный узел. А зря. Бывает что безимянный «китаец» работает «вечность»; а бывает и иначе. Горит само устройство, и тянет за собой в историю материнскую плату. При этом: изрядно забрызгивая электролитом и видеокарту. В общем: последствия болезненны и плачевны. «Умирает» практически все, кроме процессора, оперативной памяти и подключаемых устройств.

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера, мало кто обращает внимание на марку предустановленного в системе БП. Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК. Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр [1], в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения [2]. В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц. Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности. Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор [3] преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600–700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой [4].

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе [5]. Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель [6] сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений. Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. 

Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей. Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Типичная информационная наклейка БП. Основная задача – информирование пользователя о максимально допустимых токах по линиям питания, максимальных долговременной и кратковременной мощностях, итоговой комбинированной мощности, которую способен отдать БП

Конструкция модульных разъемов блоков питания может быть самой разной. Их применение допускает отключение силовых кабелей, не востребованных в отдельно взятом системном блоке.

Кроме силовых узлов в блоке есть дополнительные – сигнальные. Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах [7], и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме [9]. Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

 Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания. В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. 

Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался. Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Кожух блока питания с установленным 120-миллиметровым вентилятором. Часто для формирования необходимого воздушного потока используются специальные вставки-направляющие.

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами [8]. При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания. Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них – двухрядный – служит для питания материнской платы. Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора. Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V).

 Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. 

Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»). Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 – для последовательных портов RS-232 на плате.

На данном рисунке показана распиновка контактов блоков питания, традиционно используемых в современных ПК.

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей. Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В. Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10–15 А, а видеокарты до 20–25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500–700 Вт. Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15–25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания. Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току. Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. 

Простая математика: 240 ВА/12 В = 20 А. Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18–20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя. Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, – не более чем умелая маркетинговая уловка для непосвященных.

Качественное тестирование современных блоков питания можно провести лишь на специализированных стендах. На фото показана электронная начинка одного из них. Для теплового рассеивания больших мощностей применяется массивный радиатор, обдуваемый скоростными вентиляторами.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования. Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой. Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Краткий словарь терминов

Суммарная мощность – долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит – устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель – свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод – электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения. Трансформатор – элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX – международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации – импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF) – соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC) – импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC) – пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

http://torrent-windows.net/programmy/portable/9866-power-watts-pc-23-portable-2012-russkiy.html - программа для расщета мощности блока питания.http://technoportal.ua/articles/consumer/10049.html - как выбрать блок питания для П.К.http://cxem.net/arduino/arduino44.php - распиновка Блока питания.http://www.reviews.ru/clause/article.asp?id=3605 – тест блоков питания Gembird/

pc-parc.blogspot.com

Использование блока питания компьютера АТХ в радиолюбительской практике - Блоки питания

При разработке какой-либо конструкции, потребляющей значительную мощность существенная проблема - это источник питания. Никто не хочет наматывать силовые трансформаторы. Да и тяжел и громоздок получится блок питания. Самостоятельно делать мощный импульсный блок, - тоже сомнительное удовольствие, потому что и времени займет больше чем на всю конструкцию и ошибки или просто недостаточная аккуратность в намотке импульсного трансформатора быстренько все усилия сводит к нулю.

В общем, хотелось бы приобрести готовый импульсный блок, и желательно недорого. В таком случае оптимальным вариантом может быть блок с разборки старого ПК типа АТХ. Но не всем удается такой блок запустить. Необходимо знать его выходные параметры. К тому же блок с разборки может нуждаться в ремонте.

Ниже изложена полезная информация для тех кто решит использовать блок питания АТХ для питания своей «самоделки» или покупной аппаратуры, рассчитанной на питание от автомобильной бортовой сети, например, автомобильной радиостанции.

Блок питания ПК типа АТХ предназначен для формирования постоянных питающих напряжений +3.3V, +5V, +12V, -5V, -12V. Он выполнен в виде почти самостоятельного модуля в металлическом корпусе, из которого выведен жгут проводов с разъемами. На задней стенке есть разъем для подключения сетевого шнура (220V), еще там может быть переключатель-фишка 110/220V и (или) механический клавишный выключатель для полного отключения блока от сети. Блоки АТХ выпускаются самых разных мощностей от 150W до 840W и более. Чаще всего встречаются на 200-400W. Токи нагрузок выходных напряжений, соответственно, зависят от мощности и у разных моделей блоков питания могут отличаться даже при равной суммарной мощности блока. Но это не представляет большой проблемы, - практически на каждом блоке АТХ есть достаточно прочно наклеенная этикетка, на которой указаны его параметры по выходным токам. Например, блок ISO-450PP максимальной выходной мощностью 350W выдает ток:

20А по напряжению +3.3V,

32А по напряжению +5V,

16А по напряжению +12V,

0,5А по напряжению -5V,

0.5А по напряжению -12V.

Таким образом, даже выбирая блок с разборки (из кучи) можно по этикетке подобрать подходящий.

Рис. 1 Компьютерный БП ATX

Принципиальная схема «типового» блока питания АТХ мощностью 200W приведена на рисунке 1. Функционально условно схему можно разделить на пять участков. Первый участок представляет собой обычную схему сетевого фильтра и мостового выпрямителя на диодах D21-D24 для получения постоянного напряжения для питания импульсного преобразователя напряжения. Практически это импульсный источник питания с ШИМ на основе микросхемы TL494 и двухтактного выходного каскада на мощных ключевых транзисторах Q1 и Q2.

Но для дежурного питания в схеме есть отдельный маломощный импульсный блок питания (участок 2), - источник дежурного напряжения +5VSB, которое используется компьютером в выключенном состоянии. Этот узел выполнен по схеме однотакт-ного преобразователя на транзисторе Q12 и трансформаторе Т6. Питание на этот узел поступает с выхода сетевого выпрямителя. Вторичная обмотка Т6 с отводом и двумя диодными выпрямителями. Выпрямитель на диоде D30 служит для создания напряжения питания генератора микросхемы TL494. Второй выпрямитель на D28 служит для получения напряжения 5V для дежурного питания схемы ПК. 5V получается с помощью стабилизатора IC3. Схема дежурного блока питания интересна тем, что она практически представляет собой самостоятельный узел. Вот посмотрите, если нужен маломощный источник, например, для питания портативной аппаратуры, и есть в наличии неисправный блок питания АТХ, то, при условии исправности трансформатора Т6, можно используя этот трансформатор собрать по этой схеме блок питания, дополнив его сетевым выпрямителем. А если ИМС 78L05 заменить на 78L09 можно получить 9V для питания аппаратуры, обычно питающейся от «Кроны», а используя параметрический стабилизатор на светодиоде и резисторе можно сделать блок на 1.5V для питания такой аппаратуры, как, например, карманный МП-3 плеер. Третий участок это ШИМ-контроллер TL494. В его составе генератор импульсов с ШИМ, защита блока питания от коротких замыканий, стабилизация выходных напряжений, и формирование противофазных импульсов для управления транзисторными ключами, которые нагружены на импульсный трансформатор.

Для управления включением-выключением используется сигнал PS-ON. Он поступает от схемы компьютера. Фактически для включения основной части блока питания нужно чтобы на этой шине (PS-ON) был логический ноль. Практически, замкнуть на общий провод. При этом транзисторы Q10 и Q11 закрываются и микросхема TL494 переходит в рабочий режим.

Для выключения нужно на PS-ON подать логическую единицу уровня 5V, или просто отключить этот провод так как он подтянут к +5V через резистор R23.

На микросхеме IC2 (LM393) выполнена схема, работающая с сигналом POWERGOOD. Если в схеме ПК возникает аварийное состояние, требующее выключения эта схема выключает блок питания в дежурный режим.

Четвертый участок состоит из двух трансформаторов и двух групп транзисторных ключей. Первый трансформатор формирует управляющее напряжение для выходных транзисторов. Поскольку ШИМ-контроллер TL494 генерирует сигнал слабой мощности, первая группа транзисторов Q3 и Q4 усиливает этот сигнал и передает его переходному трансформатору Т2. Вторая группа транзисторов (Q1 и Q2), или выходные, нагружены на основной импульсный трансформатор ТЗ, который осуществляет формирование основных напряжений питания. Такая более сложная схема управления выходными ключами применена из-за сложности управления биполярными транзисторами и защиты ШИМ-контроллера от выбросов высокого напряжения.

Пятый участок - схема вторичных выпрямителей, он состоит из диодов Шоттки, выпрямляющих вторичное напряжение трансформатора ТЗ, и фильтра низких частот (ФНЧ). ФНЧ состоит из электролитических конденсаторов значительной емкости и дросселей. На выходе ФНЧ стоят резисторы, которые необходимы для того, чтобы после выключения емкости блока питания не оставались заряженными. Также резисторы стоят и на выходе выпрямителя сетевого напряжения.

Следует заметить, что далеко не все блоки питания АТХ строятся именно по схеме, показанной на рисунке 1. Могут быть существенные отличия связанные с другими схемотехническими решениями, другими параметрами по мощности, другой элементной базой. Хотя, общий функциональный состав практически у всех тот же.

И так, вернемся к началу статьи, - физически блок питания АТХ представляет собой железный ящик размерами 140x150x80мм (или около того), на одной стороне корпуса которого расположен сетевой разъем, механический выключатель (или переключатель напряжения 110/220V, или разъем для подачи питания на монитор), а на другой стороне есть отверстие из которого выходит жгут разноцветных проводов с разъемами.

По цветам проводов маркировка такая: Черный - общий провод, «земля», GND Белый - минус 5V Синий - минус 12V Желтый - плюс 12V Красный - плюс 5V Оранжевый - плюс 3.3V Зеленый - включение (PS-ON) Серый - POWER-OK (POWERGOOD) Фиолетовый - 5VSB (дежурного питания).

Рис. 2. Разъемы БП ATX

На рисунке 2 показаны разъемы (если их повернуть дырками к себе). Причем не все из показанных разъемов могут присутствовать у одного и того же блока питания. Например, главный разъем только один, -либо 20-контактный, либо 24-контактный. Разъем для SATA жесткого диска может отсутствовать вовсе. А разъем для дополнительного питания процессора может быть 4-контактный или 8-контактный. Ну а теперь «самое главное» - чтобы включить блок питания АТХ в рабочий режим нужно соединить контакт PS-ON главного разъема с любым контактом GND. Или зеленый провод соединить с любым черным.

Андреев С. Радиоконструктор, 12-2012 стр. 15-18

Поделитесь записью в своих социальных сетях! Скачать Lite браузер Сайт RA1OHX

При копировании материала обратная ссылка на наш сайт обязательна!

ra1ohx.ru