Лабораторная работа № 7 испытания на статическое растяжение. Испытание на растяжение металлов


Испытание металлов на растяжение

Что такое «испытание металлов на растяжение«? Проведем простой опыт. Возьмем маленькую пружинку, например, такую, какие применяют в шариковых ручках. Плавно растянем ее немного и отпустим. Пружинка вернется к своей первоначальной длине. Повторим опыт, но на этот раз потянем пружинку посильнее. Сначала пружинка будет равномерно удлиняться с увеличением усилия, а затем вдруг начнет удлиняться значительно быстрее. Отпускаем пружинку — она уже не возвращается к исходной длине. Пружинка получила необратимое увеличение своей длины и уже не годится для прежнего применения.

Испытание на растяжение

Давным-давно инженеры разработали аналогичное испытание – испытание на растяжение – для оценки механических свойств металлов. Образец металла, часто круглый стержень (бывает и прямоугольный), растягивают на специальной машине. Требования к проведению испытания на растяжение для металлов, а также требования к образцам для испытания на растяжение определяет ГОСТ 1497-84. ГОСТ 7564-97 задает правила вырезки образцов для испытаний на растяжение из готовой продукции или полуфабрикатов.

Разрывная машина

Для испытаний металлов на растяжение применяют специальные машины. Такие машины называют «разрывная машина» или «машина для испытания на растяжение». Эти машины обеспечивают надежное центрирование образца в своих захватах, плавность нагружения образца при растяжении и его разгрузки, медленную скорость упругого и пластического деформирования образца. Нагрузка  прилагается вдоль оси стержня, как это схематически показано на рисунке. Требования к разрывным машинам определяет ГОСТ 7855-84.

diagramma-rastyazheniyaРисунок — Диаграмма деформирования при испытании металлов на растяжение

При испытании на растяжение с увеличением усилия растяжения стержень становиться все длиннее и это изменение длины обозначают как Δl, где знак Δ обозначает «изменение, приращение», а l – начальную длину образца. Понятно, что сила F величиной 50 кГ, приложенное к каждому из двух различных  стержней – тонкому и толстому — из одинакового материала даст им различное увеличение длины. Тонкий стержень растянется, естественно, больше.

Напряжения

Чтобы сравнивать механические свойства материалов независимо от диаметра образцов применяют понятие «напряжение», который означает попросту величину усилия, поделенную на площадь поперечного сечения образца. Когда к тонкому и толстому стержню прилагаются одни и те же напряжения, они оба удлиняются на одну и ту же величину. Понятно, что при этом усилие, прилагаемое к толстому стержню, будет больше чем усилие, прилагаемое к тонкому стержню – больше как раз во столько же раз, во сколько площадь его поперечного сечения больше площади поперечного сечения тонкого стрежня. Поскольку напряжение – это усилий на единицу площади, то единицей его измерения является Н/мм2 или кГ/мм2 (кгс/мм2), где Н – это ньютон, единица измерения силы в системе измерения СИ. Десять ньютонов равны одному килограмму (точнее 1 Н = 9,8 кГ(кгс)).

Диаграмма деформирования при испытании на растяжение

Когда при испытании на растяжение стержень растягивают вдоль его оси, то прилагаемые усилия называют «растягивающие усилия», а машину, которая  вызывает эти усилия – «разрывная машина» или «машина для испытания на растяжение». На рисунке показана типичная диаграмма деформирования, которую получают при испытании металлов на растяжение. Прилагаемое напряжение откладывается по вертикальной оси. Изменение длины образца откладывается по горизонтальной оси, но не в единицах длины, в относительных единицах  Δl/l, как это показано на рисунке 1. Эта единица называется «деформация». Диаграмму деформирования при испытании на растяжение чаще называют  «диаграмма растяжения».

Диаграмма растяжения

С помощью диаграммы растяжения ГОСТ 1497-84 задает определения механическим свойствам металлов: предел пропорциональности, предел текучести (физический и условный), временное сопротивление, относительное удлинение, относительное сужение. Ниже кратко рассмотрим самые важные из них.

Упругий участок диаграммы растяжения

Диаграмму растяжения можно разделить на две области, как это показано на рисунке 1 – упругая область и пластическая область. Когда напряжение в металлическом стержне увеличивается, стержень удлиняется, также как и пружинка. Говорят, что в стержне возникают деформации.  До тех пор, пока эти напряжения и деформации не слишком велики, снятие нагрузки на стержень возвращает его к первоначальной длине. Эти деформации называют упругими.

Предел текучести

В конце упругого участка диаграммы растяжения напряжения в стержне достигают некоторого критического уровня, который называют «предел текучести», металл «сдается», точно также как и пружинка, описанная выше. Деформирование образца переходит в пластическую область диаграммы деформирования.

Временное сопротивление

При испытании металлов на растяжение на пластическом участке диаграммы растяжения – после прохождения предела текучести наблюдаются два важных явления:1) для продолжения деформации образца для заданного приращения  деформации требуется меньшее увеличение напряжения, чем в упругой области;2) при разгрузке образца — снятии напряжений — в образце остается остаточное, необратимое удлинение стержня как показано линией со стрелкой АВ.  Стержень нагружается до точки А, а затем нагрузка снимается: стержень удлинился от своей первоначальной длины на величину процентов, которые вычисляется как В×100.  Как показано на рисунке увеличение напряжения, которое требуется для продолжения пластической деформации достигает максимума в пластической области и затем немого падает перед тем как напряжения разрывают стержень на две части. Это максимальное напряжение обычно называют «временное сопротивление» или чаще – «прочность при растяжении».

Относительное удлинение

Кроме предела текучести и временного сопротивления диаграмма деформирования дает еще одну меру механических свойств металла – «относительное удлинение». Относительное удлинение характеризует пластические свойства металла. Относительное удлинение – это увеличение длины образца, которое происходит после прохождение предела текучести и до самого разрушения стержня. Его иногда называют остаточным удлинением, так оно остается в образце после его разрушения и его можно легко измерить. Остаточное удлинение образца на рисунке после того, как упругие деформации релаксировали, обозначено точкой С. Простым умножением деформации в точке С на 100 получаем величину относительного удлинения образца.

Сталь Ст3 по ГОСТ 380-2005

steel-guide.ru

Испытания на растяжение

При растяжении образца до разрушения графически фиксируют зависимости между приложенным уси­лием и удлинением образца, получая диаграммы дефор­мации (рис. 3).

Рис. 3. Диаграмма деформации материала

Деформация образца при нагружении сначала является макроупругой, а затем постепенно и в разных зернах при неодина­ковой нагрузке переходит в пластическую, происходящую путем сдвигов по дислокационному механизму. Накопление дислокаций в результате деформации ведет к упрочнению металла, но при значительной их плотности, особенно в отдельных участках, возникают очаги разрушения, приводящие в конечном счете к пол­ному разрушению образца в целом.

При испытании на растяжение согласно ГОСТ 1497-84 определяют следующие ха­рактеристики:

1. Предел пропорциональности σпц– отвечает напряжению, при котором отклонение от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованного касательной к кривой нагрузка-удлинение в точке Рпц с осью нагрузок увеличивается на 50 % от своего значения на упругом (линейном) участке. На рис. 4 показано определение предела пропорциональности графическим способом. В этом случае из начала координат диаграммы растя­жения, записанной от электрического силоизмерителя и измери­теля деформации, проводят прямую, совпадающую с начальным линейным участком этой диаграммы. Затем на произвольном уровне проводят прямую АВ, параллельную оси абсцисс, и на ней откладывают отрезок rn равный половине отрезка mr. Через точку п и начало координат проводят прямую On и параллельно ей – касательную CD к диаграмме растяжения. Точка касания определяет нагрузку Рпц в ньютонах, отвечающую пределу про­порциональности:

где Fo – начальное поперечное сечение образца.

Размеры пропорциональных цилиндрических образцов III типа и плоских образцов для испытания на растяжение приведены в табл. 1 и табл. 2 соответственно.

Таблица 1

Размеры пропорциональных цилиндрических образцов III типа, мм

Номер

образца

d0

l0=5d0

l=10d

D

h2

h3

r

1

25

125

250

45

30

5

5

2

20

100

200

34

25

5

5

3

15

75

150

28

20

3

3

4

10

50

100

16

10

3

3

5

8

40

80

13

10

3

2

6

6

30

60

12

10

2,5

1,5

7

5

25

50

11

10

2,5

1,5

8

4

20

40

9

8

2,5

1,5

9

3

15

30

7

7

2,0

1,5

Таблица 2

Размеры пропорциональных плоских образцов, мм

Номер

образца

a0

b0

l0=5,65

l0=11,3

B

h2

1

25

30

155

310

40

100

2

24

30

155

310

40

100

3

23

30

150

300

40

90

4

22

30

145

290

40

90

5

21

30

140

280

40

80

6

20

30

140

280

40

80

7

19

30

135

270

40

80

8

18

30

130

260

40

80

9

17

30

125

250

40

80

10

16

30

125

250

40

80

11

15

30

120

240

40

70

12

14

30

115

230

40

70

13

13

30

110

220

40

70

14

12

30

105

210

40

60

15

11

30

105

210

40

60

16

10

30

100

200

40

60

17

9

30

90

180

40

50

18

8

30

85

170

40

50

19

7

20

70

140

40

50

20

6

20

65

130

40

50

21

5

20

60

120

40

50

22

4

20

50

100

40

50

23

3

20

45

90

30

40

2. Предел упругости а0,05 – напряжение, при котором оста­точное удлинение достигает 0,05 % длины участка рабочей части образца, равного базе тензометра. Определяют предел упругости расчетным (по разгрузке и нагрузке) и графическим способами. При использовании способа нагрузки с допуском на величину полного удлинения (упругого + остаточного) образец после уста­новки на него тензометра нагружают равными ступенями до нагрузки, соответствующей напряжению 70-80 % от предпола­гаемого предела упругости σ0,05. Дальнейшее нагружение про­водят более мелкими ступенями с выдержкой не более 7 с.

Вычисляют величину допуска на полное удлинение суммиро­ванием определенного среднего упругого удлинения и рассчитан­ного остаточного удлинения.

Определяют нагрузку Р0,05, соответствующую установленному допуску на полное удлинение образца. Для уточнения значения Р0,05 допускается применение метода линейной интерполяции.

Графическим способом предел упругости σ0,05 определяют по начальному участку диаграммы растяжения, записанной от электрических силоизмерителя и измерителя деформации (рис. 4). Удлинение определяется на участке, равном базе измерителя деформации.

Для определения нагрузки Р0,05 вычисляют соответствующее остаточное удлинение с учетом базы измерителя деформации. Найденное значение увеличивают пропорционально масштабу диаграммы по оси абсцисс вправо от начала координат О. Из точки Е проводят прямую ЕР, параллельную прямой ОА. Точка пере­сечения Р с диаграммой растя­жения определяет искомую на­грузку Р0,05. Масштаб по оси удлинения должен быть не менее 100 : 1 при базе измери­теля деформации 50 мм и более и не менее 200 : 1 при базе из­мерителя менее 50 мм; по оси нагрузки 1 мм диаграммы дол­жен соответствовать не более 10 МПа.

Предел упругости σ0,05 вы­числяют по формуле, МПа:

.

Рис. 4. Схема определения предела про­порциональности σпц при растяжении

Рис. 5. Схема определения предела упру­гости σ0,05 при растяжении

3. Модуль упругости Е – отношение приращения напря­жения к соответствующему приращению удлинения в пределах упругой деформации; модуль упругости определяют расчетным способом с помощью тензометров и графическим способом по начальному участку диаграммы растяжения, записанной от элек­трических силоизмерителя и измерителя деформации.

Модуль упругости вычисляют по формуле, МПа:

,

где – приращение нагрузки;– среднее приращение удлинения;– начальная расчетная длина образца;Fо – на­чальная площадь поперечного сечения.

4. Предел текучести физический (нижний предел текучести) – наименьшее напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.

Верхний предел текучести – напряжение, соответству­ющее верхнему пику нагрузки, зарегистрированному до начала текучести рабочей части образца.

Предел текучести (условный) – напряжение при котором остаточное удлинение достигает 0,2 % длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики. Упомянутые пределы текучести определяют по диаграмме растяжения, полученной на испытательной машине, если 1 мм диаграммы по оси нагрузок соответствует не более 10 МПа:

МПа

Соответствующие нагрузки Рт, Ртв, Ртн для различных видов диаграммы растяжения представлены на рис. 6.

Предел текучести условный определяют расчетным спосо­бом с применением тензометров так же, как и предел упругости. Для определения графическим методом сначала вы­числяют величину остаточного удлинения с учетом установленного допуска исходя из рабочей длины образца. Найденное значение увеличивают про­порционально масштабу диаграммы рас­тяжения и полученный отрезок длины откладываютпо оси удлинения от точки О до точки Е (см. рис. 6). Из точки Е проводят прямую параллельно прямой ОА. Точка пересечения Р с диаграммой растяжения определяет нагрузку Р0,2, соответствующую условному пределу те­кучести , МПа:

.

Рис. 6. Схема определения предела текучести при растяжении

Условный предел текучести определяют только при отсутствии на диаграмме растяжения площадки текучести.

5. Временное сопротивление (предел прочности) σв – напря­жение, соответствующее наибольшей нагрузке Ртах, предшеству­ющей разрыву образца. Временное сопротивление вычисляют по формуле, МПа:

6. Относительное удлинение (после разрыва) – одна из харак­теристик пластичности материалов, равная отношению прираще­ния расчетной длины образца после разрушения к начальной расчетной длине,%:

7. Относительное равномерное удлинение – отношение при-ращения длины участков в рабочей части образца после разрыва к длине до испытания, выраженное в процентах.

8. Относительное сужение после разрыва , как и относи­тельное удлинение – характеристика пластичности материала и определяется как отношение разностиFo и минимальной Fк площади поперечного сечения образца после разрушения к на­чальной площади поперечного сечения Fo, выраженное в про­центах.

studfiles.net

Лабораторная работа № 7 испытания на статическое растяжение

Цель работы: изучение и освоение методики и оборудования для проведения испытаний на статическое растяжение, изучение основных количественных характеристик механических свойств, определяемых при испытаниях на статическое растяжение, и экспериментальное их определение для стальных образцов.

Необходимое оборудование, приспособления, инструмент, материалы: машина разрывная Р-5, образцы стальные цилиндрические, штангенциркуль, чертилка или кернер.

Краткие теоретические сведения

Рабочая длина образца l – часть образца с постоянной площадью поперечного сечения между его головками или участками для захвата (рис. 1).

Начальная расчетная длина образца lo – участок рабочей длины образца между нанесенными метками до испытания, на которое определяется удлинение (рис. 1).

Конечная расчетная длина образца lk – длина расчетной части после разрыва образца.

Начальный диаметр образца do – диаметр рабочей части цилиндрического образца до испытания (рис. 1).

Диаметр образца после разрыва dк – минимальный диаметр рабочей части цилиндрического образца после разрыва.

Начальная площадь поперечного сечения образца Fo – площадь поперечного сечения рабочей части образца до испытания.

Площадь поперечного сечения образца после разрыва Fк – минимальная площадь поперечного сечения рабочей части образца после разрыва.

Предел пропорциональности пц – напряжение, которое материал образца выдерживает без отклонения от закона Гука.

Предел упругости 0,05 – напряжение, при котором остаточное удлинение достигает 0,05% от первоначальной длины образца.

Предел текучести физический т – наименьшее напряжение, при котором образец деформируется без увеличения нагрузки.

Предел текучести условный 0,2 – напряжение, при котором пластическая деформация образца достигает 0,2 % от рабочей длины образца l.

Предел прочности (временное сопротивление) в – напряжение, соответствующее наибольшему усилию Рmax, предшествующему разрыву образца.

Истинное сопротивление разрыву Sи- напряжение, определяемое отношением усилия в момент разрыва к минимальной площади поперечного сечения образца после разрыва Fк.

Относительное удлинение  - отношение приращения расчетной длины образца (lk - lo) после разрушения к начальной расчетной длине lo, выраженное в процентах.

Относительное сужение - отношение разности Fo и минимальной Fк площади поперечного сечения образца после разрушения к начальной площади поперечного сечения образца Fo, выраженное в процентах.

Нагрузка на образец при статических испытаниях возрастает медленно и плавно или остается постоянной в течение длительного времени. К статическим испытаниям металлов и сплавов относятся испытания на растяжение, сжатие, изгиб и кручение.

Методы испытаний на растяжение черных и цветных металлов и изделий из них регламентируется ГОСТ 1497-84.

Испытание на растяжение является наиболее универсальным по сравнению с другими видами испытаний, так как оно позволяет определять механические свойства материала на всех стадиях его деформации (от упругой деформации до разрушения).

Размеры и типы образцов установлены ГОСТ 1497-84.

Испытания на растяжение проводят на образцах с гладкими зажимными головками (плоскими или цилиндрическими) (рис. 1), используя клиновые зажимные приспособления. Подготовка образцов к испытанию начинается с их контроля (осмотр внешнего вида, оценка шероховатости их поверхности и измерение размеров). Образцы с механическими повреждениями, заусенцами, неправильной маркировкой, а также с размерами, превышающими допустимые, к испытанию не допускаются.

Рис. 1. Цилиндрический образец

Испытание образцов осуществляют на серийно выпускаемых испытательных (разрывных) машинах, которые имеют три основных узла: механизм нагружения, механизм силоизмерения и устройство для автоматической записи диаграммы растяжения – диаграммный аппарат.

Установив образец на машине и выбрав зазоры, медленно и плавно нагружают образец до момента его разрыва.

Параллельно с этим записывается диаграмма растяжения, показывающая зависимость между нагрузкой, действующей на образец, и вызываемой ею изменением длины образца.

На рис. 2 показана диаграмма растяжения образца из стали. По оси ординат отложена нагрузка Р, Н, по оси абсцисс – удлинение образца l, мм.

На диаграмме отмечено несколько характерных участков: упругой деформации до точки В; равномерной пластической деформации от В до D и сосредоточенной пластической деформации от D до Е. Прямолинейный участок сохраняется до точки А или нагрузки Рпц, что соответствует пределу пропорциональности пц, который определяют по формуле:

, МПа, (1)

где Рпц – усилие, превышение которого вызывает появление остаточной деформации;

Fo – начальная площадь поперечного сечения образца.

Рис. 2. Диаграмма растяжения образца

Тангенс угла наклона прямолинейного участка характеризует модуль упругости первого рода Е.

На небольшом участке от А до В нарушается линейная зависимость между Р и l из-за упругих несовершенств материала, связанных с дефектами решетки.

Точке В соответствует усилие Рупр, при котором остаточная деформация станет равной 0,05 % от начальной расчетной длины образца.

Ордината точки В служит для определения предела упругости:

, МПа, (2)

Предел пропорциональности и предел упругости определяют упругие свойства материала.

Ордината точки С, соответствующей течению материала при пластическом деформировании, служит для определения физического предела текучести т:

, МПа, (3)

где Рт - усилие при текучести.

Физический предел текучести определяют по диаграмме растяжений, когда на ней имеется горизонтальный участок (площадка текучести). Такой участок характерен только для малоуглеродистых сталей и латуней. Для остальных сплавов определяют условный предел текучести, который равен напряжению Р0,2, при котором остаточное удлинение образца составляет 0,2 %:

, МПа, (4)

Выбранная пластическая деформация 0,2 % достаточно точно характеризует переход от упругих деформаций к пластическим, а напряжение 0,2 несложно определить при испытаниях независимо от того, имеется или нет площадка текучести на диаграмме растяжения.

Пластическое деформирование выше точки С идет при возрастающей нагрузке, так как металл в процессе деформирования упрочняется. Упрочнение металла при деформировании называется наклепом. До точки Д удлинение происходит равномерно по всей длине рабочей части рабочей части образца. Цилиндрическая форма образца сохраняется, хотя диаметр его уменьшается по мере удлинения. Ордината точки Д соответствует максимальному усилию Ртах и служит для определения предела прочности или временного сопротивления:

, МПа, (5)

Наклеп металла увеличивается до момента разрыва образца, хотя растягивающая нагрузка при этом уменьшается от Ртах до РЕ (см. рис. 2). Это объясняется появлением в образце местного утонения – шейки, в которой в основном сосредотачивается пластическая деформация. Несмотря на уменьшение нагрузки, растягивающие напряжения в шейке повышаются до тех пор, пока образец не разорвется. В точке Е определяют истинное сопротивление разрыву Sи – напряжение, определяемое отношением усилия в момент разрыва РЕ к минимальной площади поперечного сечения образца после разрыва Fк:

, МПа (6)

Напряжения 0,05, т и в - стандартные характеристики прочности.

Пластичность материала характеризуется относительным удлинением и относительным сужением.

Относительное удлинение определяется по формуле:

(7)

Относительное сужение:

(8)

На рис. 3. представлены типовые диаграммы растяжения различных материалов.

Рис. 3. Типовые диаграммы растяжения различных металлов:а- углеродистая сталь;б– аустенитная сталь;в– медь холоднодеформированная1 и рекристаллизационная2;г– углеродистая закаленная сталь3, улучшенная4и отожженная5;д– высокопрочный чугун6, ферритный ковкий чугун7, серый чугун8;е– высокоуглеродистая сталь9, алюминий10

Правила техники безопасности

1. Перед началом проведения испытаний необходимо убедится в надежном заземлении разрывной машины.

2. Соблюдать все предосторожности при закреплении образца в зажимах разрывного устройства машины.

3. Пользоваться исправным инструментом и оснасткой.

Порядок выполнения работы

  1. Ознакомиться с устройством машины для испытаний на растяжение Р-5 и принципом работы на ней.

  2. Получить и подготовить образцы для испытания, замерить диаметр. Вычислить площадь поперечного сечения образца и определить начальную расчетную длину lo.

  3. Произвести испытание образцов.

  4. Зафиксировать максимальную нагрузку, достигнутую в процессе испытания.

  5. Сложив разорванные части, замерить конечную расчетную длину образца. Рассчитать относительное удлинение.

  6. Замерить диаметр образца в месте разрыва. Рассчитать относительное сужение.

  7. Рассчитать предел прочности и истинное сопротивление разрыву.

  8. Занести все результаты измерений и расчета характеристик в таблицу.

Содержание отчета

  1. Название, цель работы.

  2. Краткие сведения об основных характеристиках прочности и пластичности металлических материалов.

  3. Эскиз образца.

  4. Диаграмма растяжения.

  5. Таблица с результатами эксперимента.

  6. Рассчитанные количественные данные о прочностных и пластических характеристиках испытанных образцов.

  7. Выводы.

Таблица

studfiles.net

Статические испытания

Статическими называют такие испытания, при которых испытуемый материал подвергают воздействию постоянной силы пли силы, возрастающей весьма медленно.

Статические испытания проводятся при однократном и достаточно медленном действии нагрузки на изделие (образец). При статических испытаниях металлов определяют упругие свойства, сопротивление малым начальным пластическим деформациям, сопротивление значительным пластическим деформациям, сопротивление разрушению, свойства, характеризующие пластичность, а иногда также и статическую вязкость.

Для полного выявления механических свойств необходимо проводить испытания материала при различных способах нагружения (растяжение, сжатие, кручение, изгиб и т.п.) с различным соотношением максимальных касательных и максимальных нормальных (растягивающих) напряжений. При этом касательные напряжения определяют главным образом возможность пластической деформации и после её развития возможность разрушения вследствие среза.

Нормальные напряжения определяют преимущественно опасность хрупкого разрушения вследствие отрыва.

При статических испытаниях обычно пренебрегают силами инерции движущихся частей испытательной машины.

Деформации при статических испытаниях определяют измерением размеров деформированных образцов микрометром или штангенциркулем, а также по показаниям механических или электрических тензометров, укрепленных на образце.

К основным разновидностям статических испытаний относятся испытания на растяжение, сжатие, изгиб и кручение.

Испытания на растяжение

Испытания на одноосное растяжение - наиболее распространенный вид испытаний для оценки механических свойств металлов и сплавов -сравнительно легко подвергается анализу, позволяет но результатам одного опыта определять сразу несколько важных механических характеристик материала, являющихся критерием его качества и необходимых для конструкторских расчетов.

Методы испытаний на растяжение стандартизированы. Имеются отдельные стандарты на испытания при комнатной температуре (ГОСТ 1497 - 84), при повышенных до 1200°С (ГОСТ 9651 - 84) и пониженных от 10 до -100°С (ГОСТ 11150 – 84) температурах; на испытания на растяжение тонких листов и лент (ГОСТ 11701 - 84). В них сформулированы определения характеристик, оцениваемых при испытании, даны типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.

ОБРАЗЦЫ И МАШИНЫ ДЛЯ ИСПЫТАНИЙ НА РАСТЯЖЕНИЕ

Для испытаний на растяжение используют образцы с рабочей частью в виде цилиндра (цилиндрические образцы) или стрежня с прямоугольным сечением (плоские образцы). На рис.1 показаны наиболее часто используемые стандартные образцы для испытаний при комнатной (а - в), повышенных (г, д) и отрицательных (д) температурах. Помимо основной рабочей части, большинство образцов имеет головки различной конфигурации для крепления в захватах. Основные размеры образца:

  1. рабочая длина L - часть образца между его головками и участками для захвата с постоянной площадью поперечного сечения;

  2. начальная расчетная длина Lо - участок рабочей длины, на кото

Рисунок 1 – Образцы для испытаний на растяжение

ром определяется удлинение:

  1. начальный диаметр рабочей части do для цилиндрических или начальная толщина ао - и ширина bо рабочей части для плоских образцов.

Машины для испытаний на растяжение очень разнообразны. Многие из них универсальны и могут использоваться при проведении других статических испытаний. Современные испытательные машины высшего класса представляют собой сложные, часто автоматизированные устройства; они все чаще оснащаются ЭВМ, при помощи которых может проводиться расчет любых характеристик свойств в процессе испытания или сразу после его завершения.

По принципу действия приводного устройства различают машины с механическим и гидравлическим приводами. Машины с механическим приводом обычно имеют небольшую мощность: они, как правило, рассчитаны на разрушающие усилия не более 0,1 – 0,15 МН. Гидравлический привод используется в машинах большей мощности, рассчитанных на нагрузки до 1 МН и выше.

На машинах с гидравлическим приводом труднее поддерживать заданную скорость деформирования образца, чем при использовании механического привода.

Для измерения силы сопротивления образца деформации используют несколько типов устройств. Наиболее распространенными из них являются рычажные, маятниковые, торсионные электротензометрические силоизмерители, месдозы.

Все силоизмерительные приборы позволяют не только фиксировать силу сопротивления образца деформации в процессе испытания, но и записывать кривую изменения этой силы в зависимости от величины деформации (абсолютного удлинения) образца. Кривую в координатах нагрузка - удлинение называют первичной диаграммой растяжения, которая и является обобщенным результатом испытания. Перо самописца, перемещающееся по ленте на диаграммном барабане, связано только с силоизмерителем. Возможность фиксирования деформаций на диаграмме растяжения обеспечивается вращением барабана - направление движения ленты оказывается перпендикулярным оси нагрузок.

МЕТОДИКА ПРОВЕДЕНИЯ ИСПЫТАНИЙ НА РАСТЯЖЕНИЕ

Основные требования к методике испытания на растяжение оговорены в стандартах. Эти требования следует рассматривать как минимальные. При выполнении, например, исследовательских работ они могут быть значительно повышены. Соблюдение стандартной методики испытаний особенно важно на заводах в тех случаях, когда результаты являются критерием качества продукции или ее паспортными характеристиками.

Каждый образец перед испытанием маркируют, измеряют и размечают. Маркировку наносят вне пределов рабочей длины образца.

Все размеры после испытания определяют с точностью не ниже 0,1мм. Для получения белее точных результатов пользуются инструментальными микроскопами. Каждый размер следует измерять несколько раз.

Величина нагрузки должна определяться с точностью до 0,5 наименьшего значения индикатора силоизмерительного механизма. Диапазон нагрузок выбирают таким образом, чтобы силы сопротивления образца деформации, по которым будут определяться прочностные характеристики, были не меньше 0,1 шкалы выбранного диапазона и не ниже 0,04 предельной нагрузки испытательной машины. При этом желательно, чтобы максимальная сила сопротивления образца находилась во второй половине шкалы. Именно при таком выборе диапазона нагрузок будет обеспечена наибольшая точность расчета характеристик свойств.

К методике проведения испытаний на растяжение при повышенных и отрицательных температурах предъявляют ряд специфических требований. При высокотемпературных испытаниях нагревательные устройства (термостаты и печи самых различных конструкций) должны обеспечивать равномерный нагрев образца в пределах расчетной длины и поддержание заданной температуры в установленных пределах в течение всего времени испытания. Рекомендуется, чтобы длина рабочего пространства печи была как минимум в пять раз больше начальной расчетной длины образца.

При повышенных температурах на свойствах многих металлов сильно сказывается окружающая образец среда. В частности, при нагреве, выдержке и в процессе испытания возможно взаимодействие материала образца с газами воздуха. За счет окисления, азотизации и наводороживания механические свойства могут кардинально меняться. Поэтому при высокотемпературных испытаниях часто приходится использовать вакуумные печи с защитной атмосферой, например инертными газами (чаще всего аргоном).

Дня низкотемпературных испытаний между захватами машины устанавливают сосуд с теплоизолирующими стенками, содержащий охлаждающую жидкость (рис. 2.6). Емкость такой криокамеры должна быть достаточно большой для того, чтобы обеспечить быстрое охлаждение и возможность поддержания заданной температуры образца при испытании.

В качестве охлаждающей среды может использоваться смесь этилового спирта разных сортов с сухим льдом, с жидким азотом. Используется также жидкий азот без спирта. Кроме того, используются холодильные камеры с воздушной атмосферой.

ХАРАКТЕРИСТИКИ, ОПРЕДЕЛЯЕМЫЕ ПРИ ИСПЫТАНИЯХ НА РАСТЯЖЕНИЕ

Механические свойства при растяжении, как и при других статических испытаниях, могут быть разделены на три основные группы: прочностные, пластические и характеристики вязкости. Прочностные свойства – это характеристики сопротивления металла образца деформации или разрушению. Большинство стандартных прочностных характеристик рассчитывают по положению определенных точек на диаграмме растяжения, в виде условных растягивающих напряжений. На практике механические свойства обычно определяют по первичным кривым растяжения в координатах нагрузка - абсолютное удлинение, которые автоматически записываются на диаграммной ленте испытательной машины. Для поликристаллов различных металлов и сплавов все многообразие этих кривых можно свести в первом приближении к трем типам

Рис. 5. Типы диаграмм растяжения

Диаграмма растяжения первого типа характерна для образцов, разрушающихся без заметной пластической деформации. Диаграмма второго типа получается при растяжении образцов, равномерно деформирующихся вплоть до разрушения. Наконец, диаграмма третьего типа характерна для образцов, разрушающихся после образования шейки в результате сосредоточенной деформации. Такая диаграмма может получиться и при растяжении образцов, разрушающихся без образования шейки (при высокотемпературном растяжении).

В зависимости от типа диаграммы меняется набор характеристик, которые в соответствии с ней можно рассчитывать, а также их физический смысл. На рис.4 (диаграмма третьего типа) нанесены характерные

Рисунок 3 – Диаграмма испытаний на растяжение

точки по ординатам которых рассчитывают прочностные характеристики:

σ = Рі / Fo

где Fo -начальная площадь поперечного сечения образца.

До точки А деформация пропорциональна напряжению Тангенс угла наклона прямой ОА к оси абсцисс характеризует модуль упругости материала:

Е = σ / δ

где δ - относительная деформация.

Модуль упругости Е определяет жесткость материала, интенсивность увеличения напряжения по мере упругой деформации. Физический смысл Е сводится к тому, что он характеризует сопротивляемость материала упругой деформации, т.е. смешение атомов из положения равновесия в решетке. Модуль упругости практически не зависит от структуры металла и определяется силами межатомной связи. Все другие механические свойства являются структурно чувствительными и изменяются в зависимости от структуры (обработки) в широких пределах. Напряжение, соответствующее точке А, называют пределом пропорциональности (σпц).

Предел пропорциональности - напряжение, которое материал выдерживает без отклонения от закона Гука. Усилие Рпц определяет величину предела пропорциональности. Приблизительно величину Рпц можно определить по точке, где начинается расхождение кривой растяжения и продолжения прямолинейного участка.

Для повышения точности расчета σпц, его оценивают как условное напряжение при котором отступление от линейной зависимости между нагрузкой и удлинением достигает определенной величины. Обычно допуск при определении σпц задают по уменьшению тангенса угла наклона, образованного касательной к кривой растяжения в точке А с осью деформаций, по сравнению с тангенсом на начальном упругом участке. Стандартная величина допуска 50%.

Предел упругости. Следующая характерная точка на первичной диаграмме растяжения - точка В. Ей отвечает нагрузка, по которой рассчитывают условный предел упругости - напряжение при котором остаточное удлинение достигает заданной величины, обычно 0,05%, иногда меньше - вплоть до 0,005%. Использованный при расчете допуск указывается в обозначении условного предела упругости:

Предел упругости характеризует напряжение, при котором появляются первые признаки макропластической деформации. В связи с малым допуском по остаточному удлинению даже σ0,05 трудно с достаточной точностью определить по первичной диаграмме растяжения. Поэтому в тех случаях, когда высокой точности не требуется, предел упругости принимается равным пределу пропорциональности. Если же необходима точная количественная оценка σ0,05, то используют тензометры.

Предел текучести. При отсутствии на диаграмме растяжения зуба и площадки текучести рассчитывают условный предел текучести -напряжение, при котором остаточное удлинение достигает заданной величины, обычно 0,2%. Соответственно условный предел текучести обозначается σ0,2. Предел текучести характеризует напряжение, при котором происходит более полный переход к пластической деформации.

Природа условного предела текучести поликристалла в принципе аналогична природе предела упругости. Но именно предел текучести является наиболее распространенной и важной характеристикой сопротивления металлов и сплавов малой пластической деформации.

Плавный переход от упругой к пластической деформации наблюдается при растяжении таких металлов и сплавов, в которых имеется достаточно большое количество подвижных незакрепленных дислокаций в исходном состоянии (до начала испытания). Напряжение, необходимое для начала пластической деформации поликристаллов этих материалов, оцениваемое через условный предел текучести, определяется силами сопротивления движению дислокаций внутри зерен, легкостью передачи деформации через их границы и размером зерен.

Эти же факторы определяют и величину физического предела текучести σт - напряжения при котором образец деформируется под действием практически неизменной растягивающей нагрузки Рт. При этом на кривой растяжения образуется горизонтальный участок, соответствующий пределу текучести.

Предел текучести зависит от размера зерна. Эта зависимость является важнейшей в теории предела текучести поликристаллов. Границы зерен служат эффективными барьерами для движущихся дислокаций. Чем мельче зерно, тем чаще встречаются эти барьеры на пути скользящих дислокаций и большие напряжения требуются для продолжения пластической деформации уже на начальных ее стадиях. В результате по мере измельчения зерна предел текучести возрастает. Многочисленные эксперименты показали, что нижний предел текучести

σт = σi + d-1|2

где σi и Ky - константы материала при определенной температуре испытаний и скорости деформирования; d - размер зерна.

Формула ( ), называемая по имени ее первых авторов Петча - Холла, универсальна и хорошо описывает влияние размера зерна не только на предел текучести, но и на любое напряжение течения в области равномерной деформации.

Предел текучести является температурно чувствительной характеристикой. В зависимости от превращений структуры здесь возможен и спад, и подъем, и сложная зависимость от температуры. Например, повышение температуры растяжения предварительно закаленного сплава - пересыщенного твердого раствора приводит вначале к повышению предела текучести вплоть до какого-то максимума, соответствующего наибольшему количеству диспесрных когерентных выделений продуктов распада твердого раствора, а при дальнейшем повышении температуры будет снижаться из-за потери когерентности частиц с матрицей и их коагуляции.

Предел прочности. При увеличении напряжений сверх предела текучести при растяжении в результате сильной деформации происходит упрочнение металла (изменение его структуры и свойств) и сопротивление деформации увеличивается, поэтому за участком текучести наблюдается подъем кривой растяжения (участок упрочнения). До точки D удлинение образца происходит равномерно. Наибольшее значение нагрузки, предшествовавшее разрушению образца, обозначается Рмах. Точка D характеризует максимальное условное напряжение, возникающее в процессе испытания, называемое временным сопротивлением или пределом прочности.

Временное сопротивление (σв)- условное напряжение, определяемое по отношению действующей силы к исходной площади поперечного сечения образца и отвечающее наибольшей нагрузке Рмах, предшествовавшей разрушению образца.

В момент, соответствующий нагрузке Рмах, появляется заметное местное сужение образца (шейка). Если до этого момента образец имел цилиндрическую форму, то теперь растяжение образца сосредотачивается в области шейки.

Участку D - E соответствует быстрое уменьшение сечения шейки, вследствие этого растягивающая сила уменьшается, хотя напряжение растет (площадь сечения в шейке Fвр < Fо).

При дальнейшей деформации шейка сужается и образец разрывается по наименьшему сечению Fк, где напряжения в действительности достигают наибольшего значения. Таким образом, нарастание пластической деформации при растяжении происходит поэтапно: равномерная пластическая деформация до точки D и местная пластическая деформация от точки D до точки - E момента разрушения.

Моменту разрыва соответствует точка E, усилие разрыва обозначим Рк. Отношение разрывающего усилия к действительной площади поперечного сечения в месте разрыва Рк называют истинным сопротивлением разрыву -Sк.

У пластичных металлов временное сопротивление является характеристикой сопротивления пластической деформации, а у хрупких -характеристикой сопротивления разрушению.

Для пластичных материалов, образующих при растяжении шейку, характеристикой сопротивления разрушению служит истинное сопротивление разрыву (при разрушении).

ХАРАКТЕРИСТИКИ ПЛАСТИЧНОСТИ ПРИ ИСПЫТАНИЯХ НА РАСТЯЖЕНИЕ

Основные характеристики пластичности при испытании на растяжение - относительное удлинение δ и относительное сужение ψ.

Общее удлинение образца при растяжении слагается из равномерного и сосредоточенного удлинения за счет образования шейки. Так,если размеры испытываемых образцов могут быть различными, то характеристикой пластичности образца служит не его абсолютное удлинение, а относительное остаточное удлинение при разрыве. Относительное удлинение после разрыва - это отношение приращения расчетной длины образца после разрыва к первоначальной расчетной длине в процентах:

δ = [(1к-1о)/1о]*100%

Чем больше δ, тем пластичнее металл.

Относительное сужение после разрыва ψ - это отношение разности начальной площади и минимальной площади поперечного сечения образца в месте разрыва к начальной площади поперечного сечения образца.

Если Fо начальная площадь поперечного сечения образца, Fк -минимальная площадь сечения образца в месте образования шейки (в месте разрыва), то относительное сужение (в процентах):

ψ =[(Fо - Fк)/Fк]*100%

При оценке свойств образцов пластических материалов большое значение имеет их сопротивление пластической деформации. Оно показывает какое напряжение можно допустить, не вызывая (или вызывая допускаемое значение) пластической деформации, т.е. изменения металла под действием внешних сил.

Характеристики пластичности тесно связаны с прочностными свойствами. При достаточно высоких значениях относительного удлинения и сужения (> 10-20 %) прочность обычно тем меньше, чем выше пластичность. Но переход к хрупкому разрушению сопровождается, как правило, снижением прочностных свойств.

В зависимости от величины удлинения меняется разница между пределами текучести и прочности, отношение σ0,2/<σв является важной характеристикой материала. Обычно оно тем меньше, чем выше пластичность.

studfiles.net

Испытания металлов на растяжение. Диаграмма растяжения. Определение продела прочности

При проектировании строительных конструкций, машин и механизмов инженеру необходимо знать значения величин, характеризующих прочностные и деформационные свойства материалов. Их можно получить путем механических испытаний, проводимых в экспериментальных лабораториях на соответствующих испытательных машинах. Таких испытаний проводится много и самых различных – испытания на твердость, сопротивляемость ударным и переменным нагрузкам, противодействие высоким температурам и т.д.

Наибольшую информацию о механических свойствах металлов можно получить из статических испытаний на растяжение. Испытания проводятся в соответствии с ГОСТом.

Для испытания на растяжение применяют образцы специальной формы – цилиндрические (рис. 4). Образцы имеют рабочую часть с начальной длиной l0, на которой определяется удлинение, и головки с переходным участком, форма и размеры которых зависят от способов их крепления в захватах машины. Различают длинные образцы с отношением l0/d0=10 и короткие - l0/d0=5. Размеры образцов делают стандартными для того, чтобы результаты испытаний, полученные в разных лабораториях, были сравнимы.

 

Рисунок 4

 

Испытания проводят на разрывных или универсальных машинах.

В зависимости от метода приложения нагрузки машины бывают с механическим или гидравлическим приводом. Они обычно выпускаются с вертикальным расположением образца. Передача усилия на образец осуществляется через захваты. Разрывная машина снабжена устройством для автоматической записи в определенном масштабе диаграммы растяжения, т.е. графика зависимости между растягивающей силой Р и удлинением образца Dl. На рис. 5 представлена диаграмма растяжения образца из низкоуглеродистой стали.

В начальной стадии нагружения до некоторой точки А диаграмма растяжения представляет собой наклонную прямую, что указывает на пропорциональность между нагрузкой и деформацией – справедливость закона Гука.

Рисунок 5

Нагрузка, при которой эта пропорциональность еще не нарушается, на диаграмме обозначена Рпц и используется для вычисления предела пропорциональности:

, (1)

 

где F0 – начальная площадь поперечного сечения образца.

Пределом пропорциональности sпц называется наибольшее напряжение, до которого существует прямо пропорциональная зависимость между нагрузкой и деформацией.

Зона ОА называется зоной упругости. Здесь возникают только упругие, очень незначительные деформации. Данные, характеризующие эту зону, позволяют определить значение модуля упругости Е, как тангенс угла наклона этой прямой.

После достижения предела пропорциональности деформации начинают расти быстрее, чем нагрузка, и диаграмма становится криволинейной. На этом участке в непосредственной близости от точки А находится точка В, соответствующая пределу упругости:

. (2)

Пределом упругости sуп называется максимальное напряжение, при котором в материале не обнаруживается признаков пластической (остаточной) деформации.

У большинства металлов значения предела пропорциональности и предела упругости незначительно отличаются друг от друга. Поэтому обычно считают, что они практически совпадают.

При дальнейшем нагружении криволинейная часть диаграммы переходит в почти горизонтальный участок СД – площадку текучести. Здесь деформации растут практически без увеличения нагрузки. Нагрузка Рт, соответствующая точке Д, используется при определении физического предела текучести:

. (3)

Пределом текучести sт называется напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.

Предел текучести является одной из основных механических характеристик прочности металлов.

Зона ВД называется зоной общей текучести. В этой зоне значительно развиваются пластические деформации. При этом происходит изменение внутренней структуры металла, что приводит к его упрочнению. Диаграмма после зоны текучести снова становится криволинейной, образец приобретает способность воспринимать возрастающее усилие до значения Рmax – точка Е на диаграмме. Это усилие используется для вычисления временного сопротивления или предела прочности:

(4)

Пределом прочности называется напряжение, соответствующее максимальной нагрузке, достигнутой в ходе испытаний.

Зона ДЕ называется зоной упрочнения. Здесь удлинение образца происходит равномерно по всей его длине, первоначальная цилиндрическая форма образца сохраняется, а поперечное сечение изменяется незначительно, но также равномерно.

При максимальном или несколько меньшем усилии на образце в наиболее слабом месте возникает локальное уменьшение поперечного сечения – шейка. Дальнейшая деформация происходит в этой зоне образца. Сечение в середине шейки продолжает быстро уменьшаться, но напряжения в этом сечении все время растут, хотя растягивающее усилие и убывает. Вне области шейки напряжения уменьшаются, и поэтому удлинение остальной части образца не происходит. Наконец, в точке К образец разрушается. Сила, соответствующая точке К, называется разрушающей Рк, а напряжения – истинным сопротивлением разрыву:

, (5)

где Fк – площадь поперечного сечения в месте разрыва.

Зона ЕК называется зоной местной текучести.

Помимо указанных характеристик прочности определяют характеристики пластичности.

Относительное удлинение после разрыва d (%) – это отношение приращения расчетной длины образца после разрыва к ее первоначальному значению, вычисляемое по формуле:

%. (6)

Относительное удлинение после разрыва зависит от отношения расчетной длины образца к его диаметру. С увеличением этого отношения значение d уменьшается, так как зона шейки (зона местной пластической деформации) у длинных образцов занимает относительно меньше места, чем в коротких образцах. Кроме того, относительное удлинение зависит и от места расположения шейки (разрыва) на расчетной длине образца. При возникновении шейки в средней части образца местные деформации в области шейки могут свободно развиваться и относительное удлинение будет больше, чем в случае, когда шейка возникает ближе к головке образца, тогда местные деформации будут стеснены.

Другой характеристикой пластичности является относительное сужение после разрыва y (%), представляющее собой отношение уменьшения площади поперечного сечения образца в месте разрыва к начальной площади поперечного сечения образца:

%. (7)

Диаграмма растяжения характеризует свойства образца, так как зависит от его размеров. Для оценки механических свойств материала диаграмму растяжения перестраивают в координатах «напряжение-деформация»: все ординаты делят на первоначальную площадь поперечного сечения F0, а все абсциссы – на первоначальную длину рабочей части l0. В результате получаем диаграмму напряжений, которая имеет тот же вид, что и диаграмма растяжения, так как F0 и l0 постоянны. Эта диаграмма является условной, поскольку при ее построении не учитывается изменение значений F0 и l0 в процессе испытания. Поэтому определенные ранее пределы пропорциональности, текучести и прочности являются условными. Истинные же напряжения в каждый момент нагружения будут больше условных. Заметное отклонение истинных напряжений от условных происходит после предела текучести, так как сужение сечения становится более значительным. Особенно сильно возрастает разница между напряжениями после образования шейки. Диаграмма напряжений, построенная с учетом сужения площади поперечного сечения и местного увеличения деформаций, называется диаграммой истинных напряжений.

Некоторые диаграммы растяжения не имеют ярко выраженной площадки текучести, например, для низколегированных сталей, сплавов алюминия (рис. 6).

Рисунок 6.

 

В этих случаях вместо физического предела текучести определяют условный предел текучести s0,2 (точка Д) – напряжение, при котором остаточное удлинение достигает 0,2% от рабочей длины образца.

 

megaobuchalka.ru

Испытание на растяжение

Основными видами испытания металлов являются одноосное статическое растяжение, на удар и на твердость. Испытания на растяжение выполняют на образцах круглого или прямоугольного поперечного сечения (рис.1.5) (цилиндрические или плоские) в условиях медленно возрастающей нагрузки (статическая).

 

Рис 1.5. Образцы для испытания на растяжение:

I – плоские; II – круглые (а – до испытания,

б – после испытания)

 

Образцы имеют рабочую длину l , расчетную lo и головки, предназначенные для закрепления образцов в захватах испытательной машины. Размеры рабочей и расчетной частей определяются стандартом. Рабочая длина l – часть образца между головками. Расчетная длина lo – часть образца с постоянной площадью поперечного сечения Fo, на которой осуществляют измерения удлинения образца под нагрузкой. Расчетная длина образца ограничивается на рабочей длине неглубокими кернами или рисками.

Испытания на растяжение выполняются на специальных разрывных машинах (рис.1.6), которые имеют три основных узла: нагружения 1, измерения силы 2 и станину, на которой монтируются эти узлы. Большинство машин снабжено устройством для автоматической записи диаграммы растяжения – диаграммным аппаратом 3, записывающим кривую растяжения в координатах нагрузка – удлинение образца.

Рис.1.6. Внешний вид машины для испытания металлических образцов на растяжение: 1 – направляющие; 2 – линейка удлинений; 3 – круговая шкала; 4 –колонны; 5 – зажимные головки;6 – ручка; 7 – выключатель; 8 –ползун;

9 – маховик; 10 – шпиндель

 

На рис.1.7 приведена диаграмма растяжения образца из низкоуглеродистой стали. На оси ординат откладывается нагрузка Р (кгс) , на оси абсцисс – удлинение образца D l (мм). Эта кривая характеризует поведение металла при растяжении от момента начала нагружения до разрыва образца.

При испытании на растяжение определяют прочность, текучесть, упругость металла и его пластичность.

Прочность (временное сопротивление разрушению), оцениваемая пределом прочности – sв (кгc/мм2 = 9,8 МПа).

Текучесть, оцениваемая условным пределом текучести s0,2 (кгc/мм2 = 9,8 МПа) или sт (кгc/мм2 = 9,8 МПа), характеризует напряжение, при котором металл деформируется без увеличения нагрузки («течет»).

Предел прочности и предел текучести необходимы при выборе материала для детали, работающей в условиях конкретных расчетных напряжений – sэкспл .Их значения выбираются конструктором с учетом определенного запаса прочности – n, обеспечивающего надежность от возможного разрушения или деформации материала детали в процессе эксплуатации.

В зависимости от условий работы и ответственности конструкции ее расчет ведут по пределу прочности или пределу текучести, выбирая соответствующий запас прочности n или n1:

 

n = sв/sэкспл=1,5 - 3,0 ; n1 = sт/sэкспл = 1,2 - 2,5

 

Упругость, оцениваемая модулем упругости Е или пределом упругости – sе (кгc/мм2 ≈ 9.8 МПа), характеризует свойства металла возвращаться к своей первоначальной форме после снятия нагрузки.

Условный предел упругости – напряжение, при котором остаточное удлинение достигает заданной величины (≤ 0,05% от первоначальной длины образца).

Предел упругости применяется при расчетах упругих звеньев машин (пружины, рессоры и т.д.).

Предел пропорциональности sпц (кгc/мм2 ≈ 10 МПа) – напряжение, которое материал выдерживает без отклонения от закона Гука. Часто используется условный предел пропорциональности близкий к пределу упругости.

Пластичность, оцениваемая относительным удлинением d % и поперечным сужением y %, характеризует способность металла к пластической деформации без разрушения.

 

 

 

 

 

Рис. 7. Диаграмма растяжения образца из низкоуглеродистой стали

 

Рассмотрим диаграмму растяжения пластичного сплава.

До точки а идет прямая линия, это значит, что удлинение пропорционально нагрузкам, прилагаемым к испытываемому образцу. Если нагрузку удалить, то образец сократиться до первоначального размера. Способность металла восстанавливать свою форму называется упругостью, а деформация – упругой. Максимальное напряжение, при котором в образце наблюдаются только упругие деформации, называется пределом упругости se. С пределом упругости близко совпадает предел пропорциональности sпц, при котором остаточное удлинение достигает некоторого определенного значения, устанавливаемого техническими условиями. Предел пропорциональности вычисляется по формуле:

 

При дальнейшем повышении нагрузки прямолинейность нарушается, так как нарушается пропорциональность между удлинением и нагрузкой, появляются остаточные удлинения. В точке l0 кривая переходит в горизонтальную линию, длина образца увеличивается без возрастания растягивающих усилий.

После горизонтального участка пластическая деформация повышает плотность дефектов кристаллического строения и прочность. Напряжение начинает увеличиваться до точки в, где достигает максимума и соответствует нагрузке предела прочности. Предел прочности определяется по формуле:

 

При нагрузке Р, соответствующей точке к , происходит разрыв образца.

Для оценки пластичности металла определяют относительное удлинение d(дельта) и относительное сужение поперечного сечения y (пси). Относительное удлинение, выражаемое в %, определяется отношением абсолютного удлинения D l , равного разности длин (l к – l о), к первоначальной длине l о (до разрыва образца). Относительное сужение – это отношение изменения площади поперечного сечения образца при растяжении к его начальной площади, выраженное в процентах.

Нагрузка PТ, соответствующая горизонтальному участку на кривой, называется нагрузкой предела текучести, а соответствующее напряжение – физическим пределом текучести. Если при растяжении образца не образуется горизонтальная площадка, то за нагрузку предела текучести принимают нагрузку, соответствующую остаточному удлинению 0,2% от расчетной длины образца и обозначают ее P0,2. Соответствующие напряжения называют условным пределом текучести s0,2.

Предел текучести физический – sт и предел текучести условный – s0,2 определяют по формулам:

, МПа

, МПа

 

Относительное удлинение определяется по формуле:

 

 

где l к – расчетная длина образца после разрыва, мм ;

l о – расчетная длина образца до испытания, мм.

Относительное сужение определяется по формуле:

 

y

 

где Fo – начальная площадь поперечного сечения образца, мм2;

Fк – площадь образца в месте разрыва, мм2

Значения относительного удлинения и поперечного сужения определяют способность металла противостоять хрупкому разрушению.

 

 

Похожие статьи:

poznayka.org

Испытание металлов

Министерство образования и науки Российской Федерации

Ивановский государственный университет

Кафедра экспериментальной и технической физики

НА ОДНООСНОЕ РАСТЯЖЕНИЕ

Методические указания к лабораторному практикуму

по курсу «Физика реального кристалла»

для студентов специальности 010400 «Физика»

Иваново 2008

Печатается по решению методической комиссии

физического факультета

Ивановского государственного университета

Составитель:

кандидат техн. наук В.В. Новиков

(Ивановский государственный университет),

Рецензент:

кандидат техн. наук С.А. Егоров

(Ивановская государственная текстильная академия)

1. Теоретические сведения

Деформациейназывается изменение размеров и формы тела. Деформа­ции разделяются наупругиеипластические. Упругие деформации исчезают, а пластические остаются после окончания действия сил. В основе упругих деформаций лежит обратимые смещения атомов вещества из положения равновесия; в основе пластических деформаций — необратимое перемещение одних частей тела по отношению к другим.

Растяжение — простой и наиболее распространенный метод определения прочности и пластичности. Диаграмма растяжения в координатах «нагрузка — удлинение образца» (рис.1) включает в себя три части: 1) участок упругой деформации до нагрузки Рупр, 2) участок равномерной пластической деформации отРупрдоРмакси 3) участок сосредоточенной деформации — развития шейки отРмаксдо Рк.

У

Рис. 1. Характерные точки на диаграмме растяжения, по которым рассчитывают прочностные характеристики

часток упругой деформации характеризует жесткость материала. Тангенс угла наклона прямолинейного участка пропорционален модулю упругости материалаЕ. Линейная зависимость междуРиlнарушается лишь на небольшом участке отРпцдо Руприз-за упругих несовершенств металла, связанных с дефектами решетки.

Пластическое деформирование идет при все возрастающей нагрузке, так как металл упрочняется в процессе деформирования. Упрочнение металла при деформировании называют наклепом. Хотя разрыв образца происходит при снижающейся нагрузке, металл продолжает упрочняться до самого момента разрушения.

Диаграмма «нагрузка — удлинение образца» просто преобразуется в диаграмму «напряжение — деформация» путем перерасчета напряжения P/S0и деформацииl/l0, гдеS0 – площадь поперечного сечения образца иl0 – длина образца перед испытанием. Напряженияпц,упр,т,в— стандартные характеристики прочности материала. Они называютсяусловными, поскольку принимают, что площадь поперечного сечения в процессе деформации не изменяется.

Предел упругостиопределяется как напряжение, при котором пластическая деформация достигает некоторой малой величины, установленной техническими условиями. Часто используют величину остаточной деформации 0.05 %. Соответствующий предел упругости обозначают0.05, Предел упругости — важная характеристика пружинных материалов, которые используются для упругих элементов машин и приборов.

Предел текучеститлегко определить, если на диаграмме растяжения имеется площадка текучести. Однако многие материалы (медь, латунь, аустенитные стали, алюминий) имеют диаграмму растяжения без площадки текучести, поэтомуусловным пределом текучестиназывают напряжение, которое вызывает остаточную деформацию 0.2 %. Пределы упругости и текучести характеризуют прочность материалов при малых деформациях.Предел прочности(временное сопротивление)вхарактеризует предельную несущую способность материала, его прочность.

Пластичностьхарактеризует относительное удлинениеи относительное поперечное сужениеобразца

,,

где l0иS0— начальная длина и площадь поперечного сечения образца,lкиSê— конечная длина образца и площадь поперечного сечения в месте разрыва.

Один и тот же материал может находится в вязком или в хрупком состоянии. Критерием состояния материала служит характер разрушения. Различают вязкое и хрупкое разрушение.

Вязкое разрушениенаступает после значительных пластических деформаций под влиянием касательных напряжений. Поверхность излома имеет гладкий матовый вид, без каких либо признаков кристаллического строения.

Хрупкое разрушение наступает без видимых пластических деформаций. На поверхности излома явно видны следы кристаллического строения. На хрупкое разрушение тратится значительно меньше энергии, чем на вязкое. Хрупкому разрушению способствует понижение температуры, увеличения скорости деформирования и концентраторы напряжений, создающее сложное напряженное состояние в деталях. Концентраторами напряженийявляются надрезы, микротрещины, поры, неметаллические включения. Около концентратора напряжение больше расчетного. У пластичных материалов влияние концентраторов нейтрализуется местной пластической деформацией.

studfiles.net