Что влияет на КПД и эффективность работы солнечных батарей? Эффективность работы солнечных панелей


Эффективность работы солнечных панелей: какие виды самые эффективные

Солнечные батареи – не новое изобретение. Уже больше полувека человечество использует излучение солнца для снабжения электроэнергией самых разных приборов и устройств. Тем не менее, аккумуляторы такого типа до их пор не получили повсеместного распространения и не вытеснили с рынка другие энергоносители. Одна из причин этого –  не всегда достаточная эффективность работы солнечных панелей.

Общая информация

Солнечной панелью или батареей называют устройство, способное перерабатывать энергию, содержащуюся в солнечном излучении, в электричество.

КПД солнечной батареи зависит от многих факторов:

  • материалы;
  • погодные условия;
  • тип батареи.

Поле

Стандартной эффективностью солнечных панелей, широко используемых для личных нужд, считается величина примерно равная 20%. У некоторых типов устройств этот показатель будет выше, у некоторых — ниже. Но среднее значение таково. Эта величина показывает, какой процент от попавшего на аккумулятор света был переработан в электроэнергию.

Конечно, это весьма приблизительное определение, но в целом верное. В лабораториях уже были созданы батареи с эффективностью в 50 и даже 100%. Но пока что это только опытные образцы.

Кремниевые панели

Идеальная эффективность работы солнечных панелей, в которых в качестве полупроводника используется чистый кремний, равна 34% от всего полученного света. При этом необходимо иметь ввиду, что в условиях недостаточной освещенности, при рассеянном свете батареи уловят меньше света, и количественный показатель этих 34% уменьшится.

  • Монокристаллические кремниевые панели хорошо проявляют себя при ярком свете, но малоэффективны при рассеянном.
  • Поликристаллические обладают меньшим КПД, но хорошо проявляют себя в условиях недостаточной освещенности.
  • Аморфные (тонкопленочные) панели также достаточно эффективны при рассеянном свете.

Типы

Гибридные панели

КПД кремниевых устройств сравнительно невысок, так как они могут  получать энергию только в красной части спектра. Энергия же синего, самого энергетически насыщенного фотона, остается неиспользованной. Ученые во всем мире активно работают над решением этой задачи.

Один из предложенных вариантов – использование ароматического углерода пентацена и химического соединения PbS. Это сочетание позволяет получать большее количество электронов и, как следствие, вырабатывать больше энергии.

Самые эффективные солнечные панели — многослойные ячейки, в которых  каждый слой выполняет свою задачу. Эффективность этих батарей может достигать 87%. Но в массовом производстве эти технологии пока не используются. С увеличением количества слоев увеличивается и стоимость аккумулятора. Для достижения 87% КПД придется сделать очень дорогую солнечную батарею.

Перовскитная панель

Весьма перспективны устройства, в основе которых есть минерал перовскит. Сейчас они менее эффективны, чем кремниевые, но это в большей степени связано с новизной технологии. Имеющиеся результаты испытаний перовскитно-кремниевых батарей позволяют предположить, что в будущем они способны занять первое место на рынке альтернативной энергетики.

Читайте также:Новое поколение солнечных батарей: гибридные панели

Рекомендации по установке

Эффективность солнечных батарей напрямую зависит от их расположения. Они должны быть обращены на юг рабочей поверхностью и наклонены под углом, равным широте той точки, на которой находятся. Панели нельзя ставить так, чтобы на них падала тень от соседнего здания, например.

Проблема, с которой можно столкнуться зимой – снег, закрывающий рабочую поверхность. Вариантов решения здесь, в общем-то, немного: либо чистить вручную, либо менять угол наклона. Полезное устройство, способное увеличить КПД аккумуляторов – трекер, поворачивающий панель следом за солнцем.

Важно следить за тем, чтобы система не сильно нагревалась, так как перегрев ослабляет фотоэффект. Этого можно избежать, установив вентилируемый аккумулятор. Пыль на рабочей поверхности также снижает количество выработанной энергии. Протирать систему нужно не реже, чем каждые два года.

На доме

Отзывы

Искать ответы на вопрос, достаточно ли эффективны батареи, использующие энергию солнца, можно в интернете, изучая отзывы тех, кто уже установил у себя в доме систему, включающую такие аккумуляторы. Если подводить итог большинству отзывов, получится, что пик производительности аккумулятора наступает примерно с февраля по сентябрь. В это время много солнечных дней, так что даже самые простенькие устройства будут добывать много электричества.

В остальное время придется использовать дополнительные источники электроэнергии или приобретать дополнительные аккумуляторы, контроллеры и прочие полезные изобретения.

Кроме объективных показателей эффективности панелей, есть еще и субъективный показатель. А именно, эффективность устройства для отдельно взятого пользователя. Например, даже самые эффективные солнечные батареи, установленные в регионе с большим количеством пасмурных дней, будут относительно бесполезны для владельца. Поэтому, прежде чем устанавливать у себя такую дорогостоящую вещь, стоит тщательно просчитать все плюсы и минусы этого решения.

batteryk.com

Эффективность работы солнечных панелей используемых для энергоснабжения

Установка солнечных панелей и энергосбережение сегодня приобретает всё большую популярность у населения нашей страны. Однако, чтобы быть довольным результатом, получать бесплатную энергию и существенно экономить на квитанциях от энергосетей, необходимо грамотно выбрать ту солнечную электростанцию, которая подойдёт именно вам и покажет эффективность работы солнечных панелей используемых для энергоснабжения.

И в этом деле важнейшим этапом является определение мощности панелей, необходимой для полноценного обеспечения именно вашего дома или загородной дачи доступной электроэнергией. Правильное определение мощности собственной солнечной мини-электростанции – залог успешной работы всей системы на протяжении долгих лет. Как же рассчитать данную мощность и сколько панелей может понадобиться в каждом конкретном случае? Давайте разбираться.

 

Итак, понятно, что солнечная электростанция должна вырабатывать достаточное количество электроэнергии, которой хватало бы на бесперебойную работу всех необходимых электроприборов в доме. А для этого домовладельцу необходимо, прежде всего, рассчитать, базовое энергопотребление в сутки. Можно посмотреть эти данные по счётчику, т.е. зафиксировать, какое количество энергии потребляет ваш дом за сутки. Есть и еще один вариант подсчёта: необходимо взять технические характеристики всех имеющихся в доме электрических приборов, узнать, сколько им необходимо энергии и умножить эти цифры на время работы данных приборов в сутки. Сложив полученные результаты, мы и узнаем, сколько электроэнергии понадобится для бесперебойной работы всей энергосистемы вашего дома. Ясно, что солнечные панели должны покрывать все расходы электроприборов.

Но вы должны понимать еще одну немаловажную вещь: любая солнечная электростанция состоит не только из панелей. В ее состав входят еще инвертор, контроллер и аккумуляторы (электропитание). К сожалению, КПД преобразования и производительность этого оборудования не равно 100%, что также необходимо учитывать при расчёте мощности покупаемых солнечных панелей.

Следующий важный параметр, используемый в формуле расчёта мощности солнечных панелей – учёт инсоляции. Излучение солнца происходит, конечно, неравномерно в течение года по всей планете. Оно зависит от нескольких факторов: времени суток, времени года, географического положения, погодных условий и т.д. При подсчётах вы должны определиться с тем, каким образом вы будете использовать свою домашнюю гелиостанцию. Если круглогодично, то необходимо знать инсоляцию вашего региона за целый год с учётом самых неблагоприятных месяцев с точки зрения солнечной активности. Если только сезонно, то следует учитывать суммарную инсоляцию за несколько месяцев.

Данные об инсоляции именно вашего региона можно взять на специализированных сайтах метеорологов, в справочниках, на различных интернет-ресурсах. Для получения более достоверной цифры можно взять данные за несколько лет. Из этих статистических данных получают усредненное значение мощности солнечного потока на один квадратный метр земной поверхности. При этом, выработка солнечных батарей максимальна при перпендикулярном падении солнечных лучей на поверхность модуля. Поэтому важен и угол наклона плоскости (он разный для разного времени года, так как в зависимости от сезона меняется высота подъема солнца над горизонтом).

Ниже представлена таблица солнечной инсоляции (кВтч/м2/сутки) города Сочи, который расположен на географической широте, равной 43,6°.

  янв февр март апр май июнь июль авг сент окт нояб дек
Горизонтальная панель 37.0 55.2 84.0 116.6 167.1 199.0 206.8 185.0 130.1 95.4 54.2 34.7
Вертикальная панель 65.8 76.5 78.1 80.0 86.9 86.2 95.7 113.6 119.0
130.0
97.6 67.6
Наклон панели 35° 62.0 80.2 103.5 125.0 163.0 184.9 198.1 197.0 161.6 141.7 92.8 61.7

Таким образом, мы видим, что наиболее благоприятными в плане инсоляции месяцами являются июнь, июль и август. Наиболее неблагоприятным являются январь и декабрь.

Формула расчёта мощности солнечной панели выглядит следующим образом:

Pсп = Eп*k*Pинс /Eинс

Здесь Pсп – это показатель мощности панели, измеряющийся в Вт. Еп – энергия, потребляемая в сутки (измеряется в Втч/сутки). Ринс – мощность солнечного излучения на один квадратный метр поверхности для вашего региона (усредненное значение, используемое производителями солнечных батарей 1000Вт/м2, но реальные показатели могут отличаться как в меньшую, так и в большую сторону. Еинс – среднемесячная инсоляция вашего региона (кВтч/м2/сутки). K – коэффициент потерь, который приходится на вспомогательное оборудование (аккумуляторы, инверторы, контроллеры и т.д.), обычно принимается равным 1,2.

Допустим, вы потребляете в среднем 50 Втч в сутки. Возьмём наиболее благоприятный месяц солнечной инсоляции в Сочи при наклоне солнечной панели в 35° - июль – со значение 198,1. Мощность солнечного излучения на квадратный метр в Сочи в среднем составляет 1366 Вт/м2. Итог: 50*1,2*1366/198,1/1000= 0,413 Вт. Таким образом, для получения 50 Втч в сутки необходима панель мощностью в среднем 0,5 Вт.

Формула расчёта энергии, которую вырабатывают солнечные батареи, выглядит следующим образом:

Eв = Eинс*Pсп/Pинс*k

Здесь, Ев – количество энергии, вырабатываемой панелями в сутки, измеряется в Втч.

Еинс - среднемесячная инсоляция вашего региона (кВтч/м2/сутки).

Рсп – мощность солнечных панелей в Вт.

Ринс - мощность солнечного излучения на один квадратный метр поверхности (1000Вт/м2).

Для примера возьмём тот же месяц июль в Сочи, и панели мощностью 0,5 Вт. Итог – 198,1*0,5/1366*1,2= 48 Втч в сутки способна вырабатывать панель, мощностью 0,5 Вт.

Теперь узнаем, сколько солнечных панелей потребуется для обеспечения вашего дома. Допустим, одна солнечная панель за год вырабатывает 250 кВт*ч. А вашему дому необходимо 100 кВтч/месяц. Итог: 100*12/250 = 4,8. Пять панелей данной мощности вам нужно будет установить.

 

gws-energy.ru

КПД солнечных батарей

Сегодня идёт много разговоров вокруг такого понятия, как КПД гелиосистем. Это один из ключевых критериев при оценке эффективности работы солнечных батарей. Увеличение этого показателя является главной задачей на пути снижения затрат на преобразование солнечной энергии и расширения использования гелиосистем. Низкий КПД солнечных батарей является их основным недостатком. Квадратный метр современных фотоэлементов обеспечивает выработку 15─20 процентов от мощности солнечного излучения, попадающего на него. И это при самых благоприятных условиях эксплуатации. В результате для обеспечения необходимого энергоснабжения требуется установка множества солнечных панелей большой площади. Насколько эффективно такое оборудование и от чего зависит его КПД, постараемся разобраться в этой статье. А также поговорим о сроке службы и окупаемости солнечных панелей. 

Содержание статьи

Виды солнечных фотоэлементов и их КПД

В основе функционирования солнечных панелей лежат свойства полупроводниковых элементов. Падающий на фотоэлектрические панели солнечный свет фотонами выбивает с внешней орбиты атомов электроны. Образовавшееся большое количество электронов обеспечивает электрический ток в замкнутой цепи. Одной или двух панелей для нормальной мощности недостаточно. Поэтому несколько штук объединяют в солнечные батареи. Для получения необходимого напряжения и мощности их подключают параллельно и последовательно. Большее число фотоэлементов дают большую площадь поглощения солнечной энергии и выдают большую мощность.

Фотоэлементы

Фотоэлементы

Теперь непосредственно о самом КПД. Эта величина вычисляется делением мощности электроэнергии на мощность солнечной энергии, попадающей на панель. У современных солнечных батарей эта величина лежит в интервале 12─25 процентов (на практике не выше 15%). Теоретически можно поднять КПД до 80─85 процентов. Такая разница существует из-за материалов для изготовления панелей. В основе лежит кремний, который не поглощает ультрафиолет, а лишь инфракрасный спектр. Получается, что энергия ультрафиолетового излучения уходит впустую.

Одним из направлений повышения КПД является создание многослойных панелей. Такие конструкции состоят из набора материалов, расположенных слоями. Подбор материалов осуществляется так, чтобы улавливались кванты различной энергии. Слой с одним материалом поглощает один вид энергии, со вторым – другой и так далее. В результате можно создавать солнечные батареи с высоким КПД. Теоретически такие многослойные панели могут обеспечить КПД до 87 процентов. Но это в теории, а на практике изготовление подобных модулей проблематично. К тому же они получаются очень дорогие.

На КПД гелиосистем также влияет тип кремния, используемого в фотоэлементах. В зависимости от получения атома кремния их можно разделить на 3 типа:

  • Монокристаллические;
  • Поликристаллические;
  • Панели из аморфного кремния.

Фотоэлементы из монокристаллического кремния имеют КПД 10─15 процентов. Они являются самыми эффективными и имеют стоимость выше остальных. Модели из поликристаллического кремния имеют самый дешевый ватт электроэнергии. Многое зависит от чистоты материалов и в некоторых случаях поликристаллические элементы могут оказаться эффективнее монокристаллов.

Панель из аморфного кремния

Панель из аморфного кремния

Существуют также фотоэлементы из аморфного кремния, на базе которых изготавливают тонкопленочные гибкие панели. Их производство проще, а цена ниже. Но КПД значительно ниже и составляет 5─6 процентов. Элементы из аморфного кремния с течением времени теряют свои характеристики. Для увеличения их производительности добавляют частицы селена, меди, галлия, индия.

Вернуться к содержанию 

От чего зависит эффективность работы солнечных батарей?

На эффективность работы солнечных батарей оказывают влияние несколько факторов:

  • Температура;
  • Угол падения солнечных лучей;
  • Чистота поверхности;
  • Отсутствие тени;
  • Погода.

В идеале угол падения солнечных лучей на поверхность фотоэлемента должен быть прямым. При прочих равных в этом случае будет максимальная эффективность. В некоторых моделях для увеличения КПД в солнечных батареях устанавливается система слежения за солнцем. Она автоматически меняет угол наклона панелей в зависимости от положения солнца. Но это удовольствие не из дешёвых и поэтому встречается редко.

При работе фотоэлементы нагреваются, и это отрицательно сказывается на эффективности их работы. Чтобы избежать потерь при преобразовании энергии следует оставлять пространство панелями и поверхностью, где они закреплены. Тогда под ними будет проходить поток воздуха и охлаждать их.

Монтаж солнечных батарей

Монтаж солнечных батарей

Несколько раз в год обязательно нужно мыть и протирать панели. Ведь КПД фотоэлектрических панелей прямо зависит от падающего света, а значит, от чистоты поверхности. Если на поверхности есть загрязнения, то эффективность солнечных батарей будет снижаться.

Важно сделать правильную установку батарей. Это означает, что на них не должна падать тень. Иначе эффективность системы в целом будет сильно снижаться. Крайне желательно устанавливать фотоэлементы на южной стороне.

Что касается погоды, то от неё также зависит очень многое. Чем ближе ваш регион к экватору, тем большая плотность излучения будет попадать солнечного излучения на панели. В нашем регионе зимой эффективность может упасть в 2─8 раз. Причины как в уменьшении солнечных дней так и в снеге, попадающим на панели.Вернуться к содержанию 

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.

Установка солнечных батарей на крыше

Установка солнечных батарей на крыше

А срок окупаемости существенно меньше, чем срок службы. Но многих останавливает первоначальная стоимость батарей. Вкупе с низким КПД у многих людей это вызывает сомнения в выгодности приобретения гелиосистем. Поэтому решение здесь нужно принимать с учётом погоды и климата в вашем регионе, условий использования и т. п.

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.

В среднем срок окупаемости по регионам составляет:

  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.
Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.

Вернуться к содержанию 

Разработки, направленные на увеличение КПД солнечных батарей

В последние годы учёные по всему миру заявляют о разработке технологий, увеличивающих КПД солнечных модулей. Не все из них являются применимыми к реальным условиям эксплуатации, но некоторые из них заслуживают внимания. Так, в прошлом году специалисты Sharp разработали фотоэлектрические элементы с эффективностью 43,5 процента. Такое увеличение было получено благодаря установке линзы, которая фокусирует получаемую энергию прямо в элементе.

Устройство фотоэлементов Sharp

Устройство фотоэлементов Sharp

Физики из Германии 3 года назад разработали фотоэлемент, площадь которого всего несколько квадратных миллиметров. Он состоит из четырёх слоёв полупроводников. Полученных ими КПД составил 44,7 процента. Здесь эффективность была увеличена за счёт размещения в фокус вогнутого зеркала.

В Стэнфорде был получен жаропрочный композит, который может быть использован для увеличения производительности фотоэлектрических панелей. В теории можно получить КПД близкий к 80 процентам. Этот композитный материал может перевести высокочастотное излучение в инфракрасный спектр, за счёт чего резко увеличивается эффективность.

Другие британские специалисты разработали технологию, которая увеличивает эффективность фотоэлементов на 22 процента. На гладкой поверхности гибких панелей они нанесли алюминиевые шипы наноразмера. Алюминий рассеивает солнечный свет, поэтому был выбран он. В результате увеличивается количество энергии солнца, которое поглощается фотоэлементом. За счёт этого удалось добиться увеличения эффективности.

Так, что специалисты в области солнечных батарей бьются за каждый процент и, возможно, в ближайшем будущем они получат широкое распространение. Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.Вернуться к содержанию

akbinfo.ru

Самые эффективные солнечные батареи

Самые эффективные солнечные батареи для дома сегодня — это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии. Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие есть самые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества?» Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»? Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

Прежде чем мы будем двигаться дальше, все же выполним обещание, данное в заголовке этого текста, и предоставим вашему вниманию список действительно самых эффективных солнечных панелей.

  • Sharp. Показатель эффективности у моделей данной фирмы составляет 44,4 %. Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции. Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.
  • Панели от испанского исследовательского института (IES). Эффективность их работы составляет 32,6 %. Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД. Но все остается стандартно: высокая эффективность — соответствующая цена, низкая эффективность — стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи. Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix, продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power, существующая на рынке уже довольно давно. В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.
  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % – продукт от Q-Cells. Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.
  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью. 16,1 % нам дают устройства от First Solar, их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие. First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.
  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole. Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареи для дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь. При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность – ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.

aeteh.ru

Самые эффективные солнечные батареи

В последнее время солнечная энергетика развивается столь бурными темпами

В последнее время солнечная энергетика развивается столь бурными темпами, что за 10 лет доля солнечного электричества в мировой годовой выработке электроэнергии увеличилась с 0.02% в 2006 году до почти одного процента в 2016 году.

Dam Solar Park - самая большая СЭС в мире. Мощность 850 мегаватт. 

Основным материалом для солнечных электростанций является кремний, запасы которого на Земле практически неистощимы. Одна беда – эффективность кремниевых солнечных батарей оставляет желать лучшего. Самые эффективные солнечные батареи имеют коэффициент полезного действия, не превышающий 23%. А средний показатель эффективности колеблется от 16% до 18%. Поэтому исследователи всего мира, занятые в области солнечной фотовольтаики, работают на тем, чтобы освободить солнечные фотопреобразователи от имиджа поставщика дорогого электричества.

Развернулась настоящая борьба за создание солнечной суперячейки. Основные критерии – высокая эффективность и низкая стоимость. Национальная лаборатория возобновляемых источников энергии (NREL) в США даже выпускает периодически бюллетень, в котором отражаются промежуточные результаты этой борьбы. И в каждом выпуске показываются победители и проигравшие, аутсайдеры и выскочки, случайно ввязавшиеся в эту гонку.

 

Лидер: солнечная многослойная ячейка

Эти гелиевые преобразователи напоминают сэндвич из разных материалов, в том числе из перовскита, кремния и тонких пленок. При этом каждый слой поглощает свет только определенной длины волны. В результате эти при равной площади рабочей поверхности многослойные гелиевые ячейки вырабатывают значительно больше энергии, чем другие.

Рекордное значение эффективности многослойных фотопреобразователей было достигнуто в конце 2014 года совместной немецко-французской группой исследователей под руководством доктора Франка Димрота во Фраунгоферовском институте систем солнечной энергии. Была достигнута эффективность в 46%. Такое фантастическое значение эффективности было подтверждено независимым исследованием в NMIJ/AIST - крупнейшем метрологическом центре Японии.

Многослойная солнечная ячейка. Эффективность – 46%

Эти ячейки состоят из четырех слоев и линзы, которая концентрирует на них солнечный свет. К недостаткам следует отнести наличие в структуре субстрата германия, который несколько увеличивает стоимость солнечного модуля. Но все недостатки многослойных ячеек в конечном счете устранимы, и исследователи уверены, что в самом ближайшем будущем их разработка выйдет из стен лабораторий в большой мир.

 

Новичок года - перовскит

Совершенно неожиданно в гонку лидеров вмешался новичок – перовскит. Перовскит – это общее название всех материалов, имеющих определенную кубическую структуру кристаллов. Хотя перовскиты известны давно, исследование солнечных ячеек, изготовленных из этих материалов, началось только в период с 2006 по 2008 годы. Первоначальные результаты были разочаровывающими: эффективность перовскитных фотопреобразователей не превышала 2%. При этом расчеты показывали, что этот показатель может быть на порядок выше. И действительно, после ряда успешных экспериментов корейские исследователи в марте 2016 года получили подтвержденную эффективность 22%, что само по себе уже стало сенсацией.

Перовскитный солнечный элемент

Преимуществом перовскитных элементов является то, что с ними более удобно работать, их легче производить, чем аналогичные кремниевые элементы. При массовом производстве перовскитных фотопреобразователей цена одного ватта электроэнергии могла бы достигнуть $0.10. Но специалисты считают, что до тех пор, пока перовскитные гелиевые ячейки достигнут максимальной эффективности и начнут выпускаться в промышленном количестве, стоимость «кремниевого» ватта электричества может быть существенно снижена и достигнуть того же уровня в $0.10.

 

Экспериментально: квантовые точки и органические солнечные ячейки

Эта разновидность солнечных фотопреобразователей пока находится на ранней стадии развития и пока не может рассматриваться как серьезный конкурент существующим гелиевым ячейкам. Тем не менее разработчик – Университет Торонто – утверждает, что согласно теоретическим расчетам, эффективность солнечных батарей на базе наночастиц – квантовых точек ‒ будет выше 40%. Суть изобретения канадских ученых состоит в том, что наночастицы – квантовые точки ‒ могут поглощать свет в различных диапазонах спектра. Изменяя размеры этих квантовых точек, можно будет выбрать оптимальный диапазон работы фотопреобразователя.

Солнечная ячейка на базе квантовых точек

А учитывая, что этот нанослой может наноситься методом распыления на любую, в том числе и прозрачную основу, то в практическом применении этого открытия просматриваются многообещающие перспективы. И хотя на сегодняшний день в лабораториях при работе с квантовыми точками достигнут показатель эффективности, равный всего11.5%, сомнений в перспективности этого направления нет ни у кого. И работы продолжаются.

 

Solar Window – новые солнечные ячейки с эффективностью 50%

Компания Solar Window из штата Мэриленд (США) представила революционную технологию «солнечного стекла», которая в корне меняет традиционные представления о солнечных батареях.

Ранее уже были сообщения о прозрачных гелиевых технологиях, а также о том, что эта компания обещает увеличить в разы эффективность солнечных модулей. И, как показали последние события, это были не просто обещания, а эффективность 50% - уже не только теоретические изыски исследователей компании. В то время как другие производители только выходят на рынок с более скромными результатами, Solar Window уже представила свои поистине революционные высокотехнологичные разработки в области гелиевой фотовольтаики.

Эти разработки открывают дорогу к выпуску прозрачных солнечных батарей, имеющих значительно более высокую эффективность по сравнению с традиционными. Но это не единственный плюс новых солнечных модулей из Мэриленда. Новые гелиевые элементы могут легко крепиться к любым прозрачным поверхностям (например, к окнам), могут работать в тени или при искусственном освещении. Благодаря своей дешевизне инвестиции в оснащение здания такими модулями могут окупиться в течение года. Для сравнения следует отметить, что срок окупаемости традиционных солнечных батарей колеблется от пяти до десяти лет, а это – огромная разница.

Солнечные ячейки от компании Solar Window

Компания Solar Window озвучила некоторые детали новой технологии получения солнечных батарей, имеющих столь высокую эффективность. Разумеется, главные know how остались за скобками. Все гелиевые элементы изготовлены, в основном, из органического материала. Слои элементов состоят из прозрачных проводников, углерода, водорода, азота и кислорода. По данным компании, производство этих солнечных модулей настолько безвредно, что оно оказывает в 12 раз меньшее воздействие на окружающую среду, чем производство традиционных гелиевых модулей. В течение ближайших 28 месяцев первые прозрачные солнечные батареи будут установлены в некоторых зданиях, школах, офисах, а также в небоскребах.

Если говорить о перспективах развития гелиевой фотовольтаики, то очень похоже, что традиционные кремниевые солнечные батареи могут отойти в прошлое, уступив место высокоэффективным, легким, многофункциональным элементам, открывающим самые широкие горизонты гелиевой энергетике. опубликовано econet.ru 

 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

Сравнительный обзор различных видов солнечных батарей

Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, растет их КПД.

При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца необходимо предварительно разобраться в отличиях оборудования, ведь для различных климатических зон используются разные типы солнечных панелей.

Содержание статьи:

Принцип работы солнечных панелей

Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.

Схема работы фотоэлектрического элемента

Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи

Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения. Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.

КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.

Максимальные КПД солнечных панелей

Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов

Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов. Принцип их работы при этом не изменяется.

Типы фотоэлектрических преобразователей

Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя. Различают такие виды батарей по типу устройства:

  • гибкие;
  • жесткие.

Гибкие тонкопленочные солнечные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами.

Сравнение рабочего КПД солнечных панелей

Реальные характеристики солнечных панелей обычно ниже, чем указанные в инструкции. Поэтому перед их установкой дома желательно самому увидеть похожий реализованный проект

По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:

  1. Кремниевые:
    • монокристаллические;
    • поликристаллические;
    • аморфные.
  2. Теллурий-кадмиевые.
  3. На основе селенида индия- меди-галлия.
  4. Полимерные.
  5. Органические.
  6. На основе арсенида галлия.
  7. Комбинированные и многослойные.

Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида. Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.

Галерея изображений

Фото из

Массив монокристаллических солнечных фотоэлементов

Массив монокристаллических солнечных фотоэлементов

Солнечная панель на основе поликристаллов кремния

Солнечная панель на основе поликристаллов кремния

Солнечная панель в виде пленки

Солнечная панель в виде пленки

Фотогальванические элементы из селенида индия-меди-галлия

Фотогальванические элементы из селенида индия-меди-галлия

Фотоэлемент на основе арсенида галлия

Фотоэлемент на основе арсенида галлия

Солнечные панели со слоем теллурида кадмия

Солнечные панели со слоем теллурида кадмия

Производство органических солнечных панелей

Производство органических солнечных панелей

Солнечная батарея из полиэфира

Солнечная батарея из полиэфира

Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25 °C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%.

Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес.

Характеристики панелей на основе кремния

Кремний для солнечных батарей изготавливают из кварцевого порошка — размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны. Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно.

Монокристаллические кремниевые панели

Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД.

Монокристаллическая солнечная панель

Большие монокристаллические солнечные панели с поворотными механизмами идеально вписываются в пустынные пейзажи. Там обеспечиваются условия для максимальной производительности

Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины.

Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.

Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата.

К преимуществам монокристаллических кремниевых батарей относят:

  1. Высокий КПД со значением 17-25%.
  2. Меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями.
  3. Достаточная эффективность генерации электроэнергии обеспечивается до 25 лет.

Недостатков у таких батарей всего два:

  1. Высокая стоимость и длительная окупаемость.
  2. Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД.

Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.

Поликристаллические солнечные батареи

Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов.

Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны.

Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы. На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму.

Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий.

Схема зависимости производительности от солнечного излучения

Днем при легкой облачности преимуществ солнечных панелей из аморфного кремния заметно не будет, их достоинства раскрываются только при плотных тучах или в тени

К достоинствам солнечных батарей с разнонаправленными кристаллами относят:

  1. Высокая эффективность в условиях рассеянного света.
  2. Возможность стационарного закрепления на крышах зданий.
  3. Меньшая стоимость по сравнению с монокристаллическими панелями.
  4. Падение эффективности через 20 лет эксплуатации составляет всего 15-20%.

Недостатки у поликристаллических панелей также имеются:

  1. Пониженный КПД со значением 12-18%.
  2. Требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами.

Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов.

Солнечные панели из аморфного кремния

Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку. В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются.

Аморфные солнечные панели

Фотоэлементы из осажденного аморфного кремния можно закреплять как на гибкой полимерной подложке, так и на жестком стеклянном листе

На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%. Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие.

За счет особенностей данной производственной технологии создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже.

Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями. Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия.

Выработка электроэнергии кристаллической и аморфной батареей

При одинаковой стоимости оборудования солнечные панели из гидрида кремния показывают большую производительность, чем их моно- и поликристаллические аналоги

Подытоживая, можно указать такие преимущества аморфных солнечных панелей:

  1. Возможность изготовления гибких и тонких панелей.
  2. Высокий КПД при рассеянном свете.
  3. Установка батарей на любые архитектурные формы.
  4. Стабильная работа при высоких температурах.
  5. Простота и надежность конструкции. Такие панели практически не ломаются.
  6. Меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов

Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей. Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Панели со слоем теллурида кадмия

Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS). Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий. Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Какую солнечную панель выбрать?

Выбор солнечных панелей для загородных домов на широте 45-60 ° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели. При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи.

Прогноз рынка солнечных панелей от DW

Ориентироваться на прогнозы аналитических компаний развития рынка солнечных панелей не стоит, ведь лучшие их образцы, возможно, ещё не изобретены

 

Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало.

Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.

Полезное видео по теме

Представленные видеоролики показывают работу различных солнечных панелей в реальных условиях. Также они помогут разобраться в вопросах выбора сопутствующего оборудования.

Правила выбора солнечных панелей и сопутствующего оборудования:

Виды солнечных панелей:

Тестирование монокристаллической и поликристаллической панелей:

Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что в ближайшие десятилетия энергия солнца станет главным источником электроэнергии во многих загородных домах и дачах.

sovet-ingenera.com

Солнечные батареи: устройство, виды и эффективность

Сравнительно недавно появилась новая отрасль энергетики – гелиоэнергетика, занимающаяся преобразованием солнечного света в электрическую или тепловую энергию.

Содержание статьи

О солнечной энергии

Солнечные батареи, или солнечные панели превращают световую энергию солнца в электрическую. Используются они обычно в составе солнечных или ветросолнечных систем.

В настоящее время есть два способа вырабатывать электроэнергию из солнечных лучей. Первый заключается в получении электрической энергии с помощью фотоэлементов. При втором способе нагревается теплоноситель в трубах гелиоэлектростанций. Из солнечного излучения также можно добывать тепло, используя солнечные вакуумные панели.

Энергия, добытая этими способами, будет в 5-10 раз дешевле, чем при использовании традиционных источников, а вот цена самих преобразователей пока высока. Правильный выбор гелиосистем для каждого конкретного случая, позволит наиболее эффективно использовать энергию Солнца.

Виды солнечных батарей для выработки электроэнергии

На данный момент существуют кремниевые и пленочные солнечные батареи. Кремниевые по способу производства делятся также на два подвида: монокристаллические и поликристаллические.

Монокристаллические получают распилом целой пластины кремния на элементы толщиной 300 мкм. Для получения поликристаллических пластин используется медленно охлаждаемый расплавленный кремний. Первая технология дороже, но КПД готового изделия выше – 20 % против 18 %.

Менее дорогими являются пленочные солнечные батареи. Изготавливаются они на основе различных соединений кадмия – материала не самого безопасного по своему токсическому воздействию на живые организмы. КПД таких пластин всего 10 %, но и стоимость значительно ниже, чем у кремниевых.

Самым дешевым в производстве является еще один вид пленочных солнечных батарей – полимерные панели, которые изготавливают на основе соединений меди, их КПД, к сожалению, не превышает 5-6 %.

Эффективность солнечных батарей

Количество электроэнергии, которую может выработать солнечная батарея, зависит от площади её поверхности. Важным условием является то, под каким углом солнечные лучи попадают на поверхность устройства. Этот угол должен приближаться к значению в 90 градусов. Для отслеживания положения Солнца существуют механические устройства. Они обеспечивают коррекцию направления батарей в дневное время в зависимости от положения солнца над горизонтом.

Выбор оборудования и места размещения панелей

Также производительность выработки электроэнергии прямо пропорциональна интенсивности падающего солнечного света, которая зависит от географического расположения местности. Например, зимой за месяц 1 кв. м Земли получает от Солнца 20 кВт энергии. Летом же количество энергии достигает 140 Квт/месяц.солнечные батареи

Ежедневные наблюдения за этим параметром светила ведут метеорологи, а среднестатистические годовые показатели для каждой местности можно найти в специальных таблицах метеорологических наблюдений.

Солнечные панели имеют КПД от 5 % до 20 %, поэтому с 1 квадратного метра их поверхности можно получать 100-150 Вт/час. Напряжение, непосредственно получаемое от солнечной батареи, чаще всего не превышает 12 Вольт. Использовать ток с такими параметрами в быту не представляется возможным, поэтому в состав солнечной электростанции должны входить и другие элементы: выпрямитель, инвертор, аккумуляторные батареи (электроэнергию надо сохранять для использования в ночное время).

Из всего вышесказанного видно, что выбор гелиоэлектростанции – процесс непростой. Без профессионалов здесь не обойтись, но и обращаться к ним без овладения общими представлениями о предмете тоже не стоит.

Устройства для отопления и нагрева воды

Для использования солнечной энергии в целях горячего водоснабжения и отопления разработаны два вида устройств: вакуумные солнечные коллекторы и плоские гелиопреобразователи.

Вакуумные солнечные коллекторы

Вакуумные солнечные коллекторы имеют сложное устройство и работают по принципу термоса. Внутри одной прозрачной трубки находится другая, покрытая поглощающим свет материалом, между ними – вакуум, для снижения потерь тепла. В полости внутренней трубки находится специальное вещество – адсорбер, который нагревается от солнечных лучей.

Адсорбер отдает тепло трубкам (чаще всего медным), в которых циркулирует теплоноситель. Нагретая вода поступает в систему горячего водоснабжения. В системах отопления, чтобы не допустить её размораживания, необходимо применять специальную незамерзающую жидкость. Вакуумные солнечные коллекторы сохраняют работоспособность при температуре воздуха минус 37 градусов Цельсия и при пасмурной погоде, так как используют и рассеянное излучение Солнца.

Плоские солнечные коллекторы

Устройство плоских солнечных коллекторов другое. Они состоят из корпуса, дно которого покрыто теплоизолирующим материалом. Всю внутреннюю поверхность корпуса занимает теплопоглощающая панель, в её углублениях проходят трубки с теплоносителем. Будучи нагретым, он используется в системе отопления. Поверхность короба покрыта защитным стеклом или поликарбонатом. Это предохраняет устройство от воздействия внешних неблагоприятных условий.

Сфера применения солнечных панелей

Солнечные батареи стали применятся относительно недавно в основном для обеспечения электроэнергией домов, коттеджей, дач, построек расположенных далеко от линий электропередач. Применяются солнечные панели как основной или альтернативный источник питания повсеместно, где есть возможность их смонтировать.солнечные панели

Свойства солнечных панелей

Подобная конструкция состоит из множества фотоэлектрических преобразователей, соединенных между собой в единое целое для превращения энергии отдаваемой солнцем в электричество. Существующие сейчас конструкции при определенных условиях способны достигать 45% эффективности.

Устанавливаются такие установки преимущественно в районах с преобладанием солнечных дней. Также учитывается и географическая широта месторасположения объекта, ввиду того что приближаясь к полюсам лучи солнца, теряют небольшое количество своей мощности. Несмотря на месторасположение вашего дома даже зимой использование солнечной панели поможет значительно уменьшить потребление электроэнергии.

Типы солнечных батарей

Данные конструкции делятся на три категории:

  1. Солнечные батареи тонкопленочные состоящие из натянутых тонких пленок, легко монтируемые практически, где удобно. Для их установки требуется значительная площадь, когда небо покрыто облаками их эффективность уменьшается до 25%. Эти солнечные батареи генерируют ток даже в самых неблагоприятных условиях, не боятся пыли и недорого стоят.
  2. Монокристаллические. Делают эти изделия в виде большого числа отдельных ячеек залитых силиконовым составом. Такая гидроизоляция обеспечивает высокую защиту от воды и позволяет их использовать на крышах, в судоходстве и других местах с повышенной степенью влажности. Имеют небольшие габариты, малый массу, повышенную гибкость, надежны и долговечны. Отличаются простотой монтажа, но имеют зависимость от прямых лучей солнца, даже небольшие облака на небе могут привести к прекращению работы.
  3. У поликристаллических изделий в ячейках располагаются кристаллы с направлением в разные стороны, что дает возможность улавливать рассеянные солнечные лучи и менее зависеть от прямого освещения. Это самые популярные модели широко используются во многих сферах для освещения, нагрева воды, изготовляют в виде панелей синей окраски, стоимость их меньше чем монокристаллических.

Достоинства солнечных батарей

  • Доступность — пока солнце светит, всегда можно получить электроэнергию, применяя солнечные панели.
  • Полная автономность, система освещения не зависит от центрального электроснабжения, постоянно повышающихся тарифов и дает возможность снизить затраты на содержание жилища.
  • Экологическая чистота конструкции, не используются ископаемые ресурсы, фотоэлементы не выбрасывают вредных веществ в атмосферу.
  • Не требуется лицензирования на получение электроэнергии. Можно устанавливать солнечные панели на крышах и фасадах домов, и даже на собственных балконах.

Советы по выбору панелей и оборудования

Солнечные панели выгодно применять не только в промышленных масштабах, но и в собственных жилищах. Отечественная промышленность наладила выпуск солнечных батарей на фотоэлементах, стоящих намного меньше зарубежных образцов с гарантией до 25 лет.солнечные батареи для дома

Прежде чем устанавливать на крыше своего дома солнечную батарею определитесь, для каких целей она вам требуется: для работы бытовых приборов, для нагрева воды или освещения.

Для нагрева воды вполне достаточно соорудить своими руками на территории солнечный коллектор, что обойдется значительно дешевле.

Для освещения и работы приборов совместно с солнечными батареями придется приобретать аккумуляторы энергии. В первую очередь фотоэлементы заряжают накопительные батареи, и после электроэнергия поступает для освещения.

Аккумуляторы от автомобилей по истечению срока службы придется менять, а особые специализированные накопители электроэнергии стоят дорого. Также в сильный мороз и жару многие модели электронных устройств отказываются работать.

Но, несмотря на все минусы солнечных панелей технологии, постоянно усовершенствуются, и все недостатки постепенно устраняются и за солнечной энергией наше будущее.

Рекомендую посмотреть

Загрузка...

instroymatrem.ru