Не очень удачное USB зарядное устройство (блок питания). Блок зарядки


Блок питания – зарядное устройство

Блок питания – зарядное устройствоВ наше время мы всё чаще и чаще используем устройства с питанием от различных аккумуляторов. Не редко применяются и герметичные гелиевые аккумуляторы (6 и 12В), в источниках бесперебойного питания, портативных переносных приёмниках с лампочками дневного света. При отдельном использовании таких батарей в других устройствах появляется потребность в их зарядке.Столкнувшись с проблемой заряда таких элементов, я просмотрел поиск в интернете, отыскал простенькую схему, при небольшой корректировке которой внедрен ещё и регулируемый блок питания.Блок питания – зарядное устройство

Схема продублирована на множестве сайтов, первоисточник не найти уже наверное, но ни на одном сайте не найти печатную плату. Потратив немного времени, нарисовал печатную плату, в виде модульного блока, в программе Sprint-Layout 5.0 (6.0).

Предложенное комбинированное зарядное устройство обладает следующими характеристиками:– зарядка аккумуляторов напряжением 6В;– зарядка аккумуляторов напряжением 12В;– установка зарядного тока, пяти фиксированных номиналов: 0,15; 0,35; 0,45; 0,75; 1,5А;– регулируемый блок питания, напряжением от 1,2 до 28В, с максимальным током нагрузки 1,5А.

Схема простая, но при монтаже легко запутаться в распайке переменных резисторов и тумблеров. Учтя этот момент, нарисована была и монтажная схема.

Блок питания – зарядное устройство На монтажной схеме переменные резисторы и тумблеры расположены лицом к вам.

В качестве корпуса был использован корпус от компьютерного блока питания форм фактора АТ (урезанного), с небольшой переделкой, а именно вырезка части корпуса и установка вместо неё стеклотекстолитовой вставки.

Блок питания – зарядное устройствоНа панельке установлены: переменные резисторы R7 – R9, тумблеры SA2, SA4, галетный пятипозиционный переключатель режима тока, выходные разъёмы.Блок питания – зарядное устройствоДополнительно в схему включен куллер охлаждения с диодным мостом, подключенный на одно из плеч трансформатора.К сожалению фото собранного модуля, нет, потому как он уже смонтирован вовнутрь корпуса. Привожу скриншот рисунка печатной платы:Блок питания – зарядное устройство

Детали.Используемый в моём варианте трансформатор питания ТП-160-2 можно заменить на любой с аналогичными параметрами, двумя вторичными обмотками по 12в и нагрузочной способностью не менее 1,5А.

Печатная плата изготовлена из 1,5мм толщины фольгированного стеклотекстолита. Переменные резисторы линейной характеристики. Аналог микросхемы кр142ен22 – LT1083. Остальные элементы и их характеристики приведены на схеме.Фото законченного устройства.

Блок питания – зарядное устройствоБлок питания – зарядное устройство

Немного об эксплуатации.В результате первого пуска ожидания оправдались, всё заработало. При использовании в режиме заряда 6В аккумулятора необходимо выставить напряжение заряда 7,34В ( регулировка от 1,2 до примерно 8В), 12в аккумулятора выставляем напряжение заряда 14,7В (регулировка от 1,2В до примерно 18В). Зарядный ток выставляется в зависимости от ёмкости аккумулятора, по нормальному не боле 10% от неё.

Прилагаемая к статье принципиальная и монтажная схема выполнены в программе SPlan 7.0, в файле две вкладки.

Файлы: shemaplata.rar [22.11 Kb] (скачиваний: 422)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Модуль зарядки TP4056

Привет всем муськовчанам! Сегодня обзор будет посвящён довольно известной плате для зарядки лития, сразу извиняюсь, если где-то, возможно, ошибся и так далее, всё-таки я не совсем профессиональный «радиолюбитель».

Плата пришла в мелком пакете. Вообще ничем не была защищена, хотя, судя по отзывам, некоторым приходят во влагозащищенных пакетиках. Но товар всё же дошёл в целости и сохранности.

.

Внутри у нас 5 плат, размеры совсем смешные — 25-19мм, то есть встроить можно куда угодно. Существуют и другие подобные платы, но уже с защитой от переразряда и прочего, с дополнительными контактами для/под нагрузку, то есть встраивают их куда только можно (любая портативная электроника; даже батарейки можно заменить на аккумы, запросто встроив подобную плату).

Итак, что мы видим на плате:

1) Зелёный диод — сигнализирует о ПИТАНИИ/АККУМ ЗАРЯЖЕН. 2) Красный диод — сигнализирует о том, что идёт зарядка. 3) Ограничивающий резистор (можно сменить, изменяя силу тока — таблица ниже). Стандартно установлен резистор на 1.2 кОм (номинал 122), при этом сила тока составляет 1А.

4) Сам контроллер заряда TP4056 довольно известный, который отключается от аккумулятора при достижении на аккумуляторе заряда в 4.2В, при заряде сила тока постепенно понижается. 5) Контакты для запаивания любого 5В блока питания. Рядом выход microUSB для подачи питания, также существуют на разъёмах miniUSB и просто USB. То есть выбираете на свой вкус. 6) Контакты для аккумулятора. Теперь давайте подключим к плате питание. Питание подключено, горит зелёный диод.

Подключаем аккумулятор, горит красный диод. .

Как только аккумулятор зарядится, загорится зеленый диод. Как я сказал ранее, при достижении на аккумуляторе ≈ 4.2В, контроллер отключается от аккумулятора.

В общем, вот такой короткий обзор. Отличная недорогая зарядка для лития, где легко можно получить желаемую силу тока для литиевого либо литиево-полимерного аккумулятора.

mysku.ru

Не очень удачное USB зарядное устройство (блок питания)

Написать про это зарядное устройство хотел давно, но все не доходили руки, хотя даже у него есть на что посмотреть.Получил я его от одного довольно известного магазина, который после моего отчета изъял его из продажи и на мой взгляд сделал правильно. Собственно потому я и не даю ссылку на товар. Возможно он вам попадется в других магазинах, потому считаю, что данный обзор все равно будет полезен.

Получил я данное зарядное устройство (хотя конечно корректнее - блок питания) в обычном пакете с защелкой, никаких блистеров и коробок.Не очень удачное USB зарядное устройство (блок питания)

Размер не назвал бы совсем маленьким, мне попадались куда более габаритные варианты при не слишком меньшем заявленном токе.Не очень удачное USB зарядное устройство (блок питания)

Заявлен выходной ток в 3000мА, что довольно неплохо для большинства применений, например можно заряжать планшет + смартфон.Зарядное имеет два выходных порта, промаркированных как iPad и Galaxy, ну или как устройства от Эппл и Самсунг.Сверху расположен светодиод индикации работы, светит всегда независимо от режима работы.Не очень удачное USB зарядное устройство (блок питания)

Но так как снаружи для меня обычно нет ничего интересного, то я конечно же решил его вскрыть. Делается это относительно просто, выковыриваем небольшую щелку между половинками корпуса, а затем при помощи отвертки разделяем половинки. БП заклеен, но открылся довольно легко.Не очень удачное USB зарядное устройство (блок питания)

На первый взгляд довольно аккуратно, по крайней мере не вызвало нехороших чувств.Не очень удачное USB зарядное устройство (блок питания)Не очень удачное USB зарядное устройство (блок питания)

Плата изготовлена аккуратно, правда светодиод лежит прямо на разъемах USB, но в качестве защиты на них наклеили изолирующую пленку.Не очень удачное USB зарядное устройство (блок питания)

Плата спаяна также вполне нормально, есть небольшие грехи, но в целом на твердую четверку. Минус один балл снял за местами грубоватую пайку и отсутствие защитных разрезов в текстолите.Не очень удачное USB зарядное устройство (блок питания)

Вот что меня немного удивило и даже заставило сделать отдельный снимок, так это то, что провода к плате имеют силиконовую изоляцию и без проблем держат температуру жала паяльника. А кроме того они весьма гибкие, купить бы такого провода себе отдельно от блока питания.Не очень удачное USB зарядное устройство (блок питания)

Рассмотрим плату более детально.1. Входных конденсаторов два, соединены параллельно, суммарная емкость около 10мкФ, для 15 Ватт мало. Входной фильтр отсутствует, зато есть предохранитель :)2. Микросхема в DIP корпусе. Даташит на нее я не искал, но помню что где то уже попадалась и даже соответствовала мощности блока питания. Зато увидел весьма диодный мост в весьма оригинальном исполнении, до этого такие как-то не попадались.3. Трансформатор не очень большой, заявленные 15 Ватт для него действительно максимальны, запаса нет :(4. Но при всем этом межобмоточный конденсатор стоит правильного типа, кроме того есть обратная связь через оптрон, иногда даже на этом экономят.5. Выходных диодов два, включены параллельно, емкость выходного конденсатора всего 1000мкФ, для тока в 3 Ампера этого маловато. Кроме того отсутствует выходной фильтр.6. А вот обратная связь реализована не очень хорошо, явно видна экономия. Вместо нормальной схемы с TL431 применили просто стабилитрон.Не очень удачное USB зарядное устройство (блок питания)

Кстати, входной конденсатор разделен на два более мелких не зря, между ними спрятался небольшой дроссель для уменьшения помех.Не очень удачное USB зарядное устройство (блок питания)

Микросхема имеет внешний шунт для измерения тока, что говорит о как минимум наличии защиты от короткого замыкания выхода, и защита действительно работает.Около выходных разъемов установлены делители напряжения. Они используются для того, чтобы заряжаемое устройство знало, какой ток оно может взять от зарядного устройства.Не очень удачное USB зарядное устройство (блок питания)

На всякий случай, да и просто для общей информации, начертил принципиальную схему данного блока питания. Ничего нового, что отличало бы данный блок питания от других я не увидел, ну разве что уже давно не попадались блоки питания со стабилитроном вместо специальной микросхемы для стабилизации выходного напряжения.Не очень удачное USB зарядное устройство (блок питания)

Проверка по большому счету более чем стандартна для моих обзоров. В ходе теста были использованы:Электронная нагрузкаОсциллографМультиметрТермометрБумажка и ручка.

1. Первый тест без нагрузки, выходное напряжение немного завышено, норма до 5.25 Вольта. Хотя такое встречается довольно часто.2. Второй тест - ток нагрузки 1 Ампер, уровень пульсаций заметно вырос, выходное напряжение вполне в норме.Не очень удачное USB зарядное устройство (блок питания)

1. Ток нагрузки 2 Ампера. уровень пульсаций около 0.7 Вольта, это очень много. Осциллограф даже пришлось переключить на режим 0.2В на клетку, а не 0.1, как это было в предыдущем тесте.2. Ток нагрузки 2.5 Ампера, уровень пульсаций как в предыдущем тесте, выходное напряжение в норме.Не очень удачное USB зарядное устройство (блок питания)

Дальше было в планах выставить 3 Ампера, но температура выходных диодов перевалила за 100 градусов и я остановил тест.На основании теста была составлена табличка. Интервал между тестовыми измерениями составлял 20 минут, весь тест занял 1 час.Как можно видеть из таблицы, температура выходных диодов и конденсатора достигла довольно высоких значений, эксплуатировать долго в таком режиме не рекомендуется, потому тест был остановлен.Не очень удачное USB зарядное устройство (блок питания)

Иногда спрашивают, а от чего вообще выходят из строя блоки питания. Ниже фото двух блоков питания 5 Вольт 2 Ампера. Они вышли из строя с интервалом примерно в пол часа. Средний от планшета Текласт, до этого нормально работал несколько месяцев, а потом внезапно выгорел с небольшими спецэффектами, планшет в это время заряжался и был включен. Но так как планшет был нужен, достал с полки еще одно зарядное устройство, которое также без проблем прошло тесты и работало нормально (справа), через пол часа ситуация повторилась, пришлось заряжать планшет от лабораторного блока питания.

Очень часто блоки питания выходят из строя из-за:1. Перегрев силового трансформатора, падает магнитная проницаемость сердечника выше критической температуры.2. Некорректная работа самого ШИМ контроллера, особенно в режиме перегрузки или КЗ.3. Падение емкости конденсаторов в следствии старения.Не очень удачное USB зарядное устройство (блок питания)

Данный блок питания трудится уже более полугода, но пришлось его немного доработать. К ШИМ контроллеру припаял металлическую пластинку, выполняющую роль радиатора, а внизу и вверху корпуса насверлил вентиляционных отверстий. В таком варианте проблем нет, хотя я думаю, что если использовать при токах до 2 Ампер, то работать будет и без доработки.Не очень удачное USB зарядное устройство (блок питания)

В общем что можно сказать про данное устройство. ТАкое чувство, что разогнались сделать хорошо, но потому вдруг закончились деньги и решили сделать дешево. Т.е. местами сделано нормально, но видны явные следы экономии. Да и заявленный ток в 3 Ампера несколько оптимистичен, я бы не стал рисковать и нагружал максимум на 2 Ампера.

На этом все, вот такой вышел небольшой, но грустный обзор.Не очень удачное USB зарядное устройство (блок питания)

www.kirich.blog

Зарядное устройство для Android-смартфона: все, что нужно знать

В каких ситуациях можно спокойно заряжать гаджет через неоригинальное зарядное устройство, а когда лучше не рисковать?

Сейчас практически у каждого дома лежит по несколько зарядок: для смартфона, планшета, плеера и других гаджетов. В связи с этим у многих пользователей возникает вопрос: можно ли использовать неродную зарядку? Что будет, если использовать зарядку с планшета для смартфона? Чем опасны китайские аналоги?

Адаптеры (блоки) питания

Наша обзорная статья постарается ответить на все вопросы и развеять популярные мифы.

Виды зарядок и разъемов

Для начала необходимо разобраться, с какими типами зарядок для смартфона и планшета мы чаще всего сталкиваемся в повседневной жизни:

  • MicroUSB. Пожалуй, наиболее распространенный разъем, применяемый для питания мобильных девайсов. Он используется различными производителями на смартфонах и планшетах, работающих под управление программных платформ Android и Windows Phone.
  • Lightning. Особый 8-контактный разъем, который применяется компанией Apple в линейках iPhone, iPad Pro, iPad Mini, iPod Nano и iPod Touch.
  • USB Type-C. Симметричный разъем позволяет не задумываться, какой стороной штекера или кабеля нужно вставлять шнур в разъем, и немного упрощает нашу жизнь. Кроме того, USB Type-C предоставляет более высокую передачу данных и возможность передачи энергии мощностью до 100 Вт, что делает его удобным не только в отношении смартфонов и планшетов, но и более крупных аппаратов — ноутбуков или мониторов. USB Type-C уже начинает «входить в моду», и все больше мобильных производителей оснащают гаджеты новым разъемом вместо microUSB. Подробности читайте здесь.
  • Ноутбуки. Единого стандарта для зарядного устройства ноутбуков пока не существует (возможно, в будущем им станет именно универсальный USB Type-C), поэтому различные модели используют разные разъемы в зависимости от производителя.

Большинство мобильных гаджетов используют одинаковые разъемы, чаще всего ими оказываются MicroUSB и USB Type-C, если речь идет о смартфонах и планшетах на Android. Иногда возникают ситуации, когда под рукой просто нет необходимого зарядного устройства, но использовать неродной блок питания не всегда безопасно.

Характеристики зарядных устройств

Для начала нужно определить главные характеристики любой зарядки для смартфона — речь идет о блоке (адаптере) питания, который вставляется в розетку. В зависимости от емкости аккумулятора, типа девайса и других факторов зарядные блоки различаются по своим характеристикам, которые мы должны были изучать еще на уроках физики.

Характеристики адаптера питания

Зарядное устройство от планшета Samsung на 2.0A

На каждом нормальном адаптере питания есть определенная маркировка с указание технических характеристик. Она пригодится в том случае, если придется постоянно питать смартфон от неродной/неоригинальной зарядки.

Еще раз оговоримся: если речь идет о единичных случаях применения неоригинальных приборов, то ничего страшного не случится. Если же вы собираетесь использовать их постоянно, обязательно изучите статью.

На блоках питания производители обязательно оставляют свой логотип, ставят различные маркеры, значки сертификации и ГОСТа, а также указывают действительно полезную информацию:

  • Интервал напряжения электрического тока: как правило, 100-240V (вольт).
  • Частота: на всех наших блоках 50-60Hz.
  • Output (выход) — главная характеристика адаптера питания, обычно выглядит так (5.0V — 1.0A) или так (5.0V — 2.0A).

Остановимся на последней характеристике подробнее. 5.0V — стандартный показатель, но значение силы тока бывает разным в зависимости от адаптера и гаджета, который им заряжается. Как правило, сила тока на блоках питания составляет 1.0A (для смартфонов) или 2.0A (для планшетов). Бывают случаи, когда сила тока составляет, например, 0.85A, 2.1A, 1.5A.

Зарядка Sony 850mA

Зарядное устройство для смартфона Sony на 0.85A (850mA)

Неоригинальные зарядные устройства

Зарядное устройство с большей силой тока. Если сила тока превышает показатель, потребляемый вашим гаджетом, ничего страшного произойти не должно. Дело в том, что литий-ионный аккумулятор оборудован специальной защитной платой, которая предотвращает перезаряд/переразряд, а иногда даже короткое замыкание. Более того, современные смартфоны оснащены контроллерами питания, которые не позволяют им принимать ток большей силы, чем необходим данной батарее.

Блок питания Huawei 1.0A

Зарядное устройство от смартфона Huawei на 1.0A

Несмотря на эту защиту, заряжать гаджет от блока питания с более высоким показателем силы тока (А) нежелательно, поскольку опыт и форумы говорят о том, что телефон сильно нагревается, а батарея быстрее выходит из строя.

Зарядное устройство с меньшей силой тока. Специалисты не рекомендуют использовать более слабую зарядку. В таком случае аккумулятор будет запрашивать больше энергии, которое зарядное устройство обеспечить не может. Это может привести к перегреву как блока, так и гаджета, а иногда даже к короткому замыканию и возгоранию.

Блок зарядки ASUS 2.0A

Зарядное устройство для планшета ASUS Nexus 7 на 2.0A

Зарядка от другого производителя. Многие пользователи жалуются, что при использовании китайского зарядного устройства с аналогичными силой тока и напряжением процесс занимает больше времени, чем требуется при применении оригинального зарядника.

Блок зарядки Apple 1.0A

Зарядное устройство для iPhone 5/5S на 1.0A

Проблема в том, что у разных мобильных производителей нет общепринятого стандарта кодирования нагрузочной способности блока питания. Из-за этого гаджет одного бренда не всегда «понимает» зарядку, изготовленную на заводе другой компании. В таком случае процесс зарядки осуществляется в безопасном режиме 500 mA (0,5A) и намного медленнее, что также может привести к перегреву. Бывают ситуации, когда устройство вообще не распознает подключаемый к нему кабель как зарядку.

Вывод. Рекомендуем применять родное зарядное устройство или официально совместимое с ним от известного производителя (выбрать можно на Яндекс.Маркете). Конечно, в непредвиденных ситуациях можно сделать исключение, но не стоит делать это регулярно. Также изучите и примите к сведению правила зарядки смартфонов.

Загрузка...

androidlime.ru

Блок питания 12 В из зарядного устройства для смартфона

Для радиолюбительских самоделок часто требуются источники питания с различными выходными характеристиками. Например, для сборки простой схемы автоматики освещения мне потребовался маломощный блок питания на 12 В. Покупать его оказалось накладно, стоимость готового источника превысила стоимость схемы автоматики. Самому сделать такой источник можно, и значительно дешевле имеющихся в продаже, но это уже при многократном повторении вносит рутину в творческий процесс. Поэтому, я нашёл относительно простой и достаточно дешёвый способ создать такой источник, это переделка готового зарядного устройства для смартфона.

Однажды у одного китайского продавца мне довелось приобрести десяток зарядных устройств для смартфонов с выходными характеристиками 5 В 1 А, что вполне удовлетворило мои потребности. Причём, эти ЗУ имеют стабилизацию выходного напряжения и в режиме холостого хода потребляют мало энергии, что не маловажно для создания устройств автоматики освещения и т.п. Всё, что мне осталось, поднять выходное напряжение до необходимого мне уровня, о чём и расскажу дальше.

Само ЗУ выглядит так:

 

Мне десяток таких малышек обошёлся по доллару за штучку.

Интересующие нас внутренности устройства можно посмотреть после аккуратного вскрытия:

   

Для Вас специально, и для личного архива, снял схему ЗУ, хотя для переделки в её подробности я даже не вникал.

Рисунок 1. Схема зарядного устройства для смартфона 5V 1A

Переделка поэтапно заключается в следующем:

  1. Аккуратно тонким эмалированным проводником делаем виток обмотки (можно несколько) и при включенном ЗУ под нагрузкой (подключаем заряжаемый гаджет) смотрим осциллографом амплитуду импульсов. Таким образом, определяем напряжение, создаваемое одним витком обмотки.
  2. Выпаиваем USB разъём.
  3. Снимаем тестовый виток и доматываем эмалированным проводником (подобным по толщине проводнику вторичной низковольтной обмотки) столько витков, сколько не хватает для получения требуемого выходного напряжения. Припаиваем намотанную обмотку последовательно вторичной заводской. Место спайки выбираем точку контакта с импульсным диодом Z1. Разрезаем дорожку между вторичкой и Z1. Припаиваем к контакту анода Z1 свободный конец домотанной вторички.
  4. Выпаиваем стабилитрон VD2, и вместо него впаиваем такой же, но на нужное напряжение, которое у нас и будет подаваться на выход.
  5. Выпаиваем конденсатор C4 и впаиваем аналогичную ёмкость на большее напряжение (на порядок выше выходного), например, для 12 В я выбрал конденсатор 100 мкФ 25 В.

В общем всё. Схема должна заработать без бубнов с танцами, если при переделке ничего не поломали.

У меня на трёх витках тестовой обмотки получился импульс, приближенный к прямоугольнику размахом 6 вольт, что даёт 2 вольта на виток. До 12 В мне не хватает 7 В или 3,5 витка. Мотаю 4 витка и далее по пунктам выше.

Конструкция получилась достаточно компактной, так что уместилась в родной корпус с небольшими переделками.

     

По факту у меня на выходе вышло 13,2 В. Возможно попался стабилитрон с такой характеристикой, а возможно я чего-то ещё не знаю про подобного рода переделки. В любом случае можно скорректировать напряжение другим стабилитроном, с меньшим напряжением стабилизации. Если такового не найдётся, не забывайте, что нужный стабилитрон можно получить при последовательном включении двух и более идентичных по току с разными напряжениями. Общее напряжение стабилизации будет суммой всех, входящих в цепочку.

И самое главное - О БЕЗОПАСНОСТИ! При работе с данной схемой во время теста с открытой платой нужно быть особо внимательным! На плате часть проводников находится под высоким сетевым напряжением, опасным для жизни! Не прикасайтесь к схеме ни чем ни к каким местам. Тестовая обмотка должна быть подключена к осциллографу до включения устройства в сеть!

volt-info.ru

Блок управления для зарядных устройств — Поделки для авто

Схема такого блока питания давным-давно была опубликована на одном буржуйском радио журнале. В первые собрал и опробовал ее несколько лет тому назад. С тех пор блок управления был многократно повторен, ввел некоторые изменения добавил защиту, стабилизацию и использовал как лабораторный блок питания, но сегодня рассмотрим исходную схему и узел защиты, который позднее был доработан.

Исходная схемаБлок управления

Схема с небольшими изменениямБлок управления для зарядных устройств

Поскольку данный вариант будет работать в качестве зарядного устройства, то высокая стабилизация не так уж и актуальна, а сама схема из себя представляет регулятор тока и напряжения. В основу работы углубляться не буду, поскольку в русскоязычных архивах она встречается довольно часто, с подробным описанием.Блок управления для зарядных устройств

Печатную плату к сожалению предоставить не могу, она была утрачена из-за поломки ЖД.

Несколько слов о компонентов схемы.

Чтобы не мучиться с подбором транзисторов, советую все маломощные  (в том числе и в схеме защиты) заменить наNPN-BD139PNP-BD140

К стати в отличии от исходной схемы у нас добавлен еще один силовой транзистор, который подключен параллельно первому, ну и разумеется о выравнивающих резисторах не забываем.Блок управления для зарядных устройств

На счет выравнивающих резисторов — в моем варианте 0,1Ом 5 ватт, китайские, самые обычные.

Силовые транзисторы стоят хорошие (как право их применяют в выходных каскадах УМЗЧ) 2sc5198, но в принципе сюда подойдут 2N3055, КТ819 (желательно в металле), КТ803, КТ805 (тоже желательно в металле) и т.п.Блок управления для зарядных устройств

За счет параллельно установленных ключей выкачивал с этого блока 12 Ампер тока, но не забываем об одном — это линейная схема и при таких токах выделяется колоссальное тепло, поэтому ключам нужно хорошее охлаждение, плюс еще и кулер, если собираетесь мучить блок на больших токах.Блок управления для зарядных устройств

К стати — важная особенность этого блока — функция ограничения тока, т.е можно выставить любой ток заряда вручную  (в пределах разумного) вращением переменника 470R.

На вход схемы можно подавать до 35 Вольт (можно и больше, с небольшим пересчетом некоторых компонентов), на выходе получаем 0,8-32 с возможностью регулировки, хотя для зарядки автомобильных АКБ достаточно напряжения 15-18 Вольт. Ток можно регулировать от 50мА до максимума.

Защита релейная, ток срабатывания тоже можно выставить (от 1 А). Работает по принципу обычной защелки, в качестве датчика тока входной шунт в лице параллельно соединенных резисторов 0,39R 5W. Кнопка , которая имеется в схеме защиты изначально должна быть в замкнутом состоянии. Когда блок ушел в защиту, то кнопку на короткое время размыкают, затем снова замыкают, этим снимая БП с защиты.Блок управления для зарядных устройств

В случае внедрения данной схемы под зарядное устройство для автомобильных АКБ, реле нужно взять на 12 Вольт  с током 20 Ампер , ток в целом  зависит от параметров вашего ЗУ.

Простая и очень надежная в работе схема, которую крайне, крайне трудно спалить.

Автор; АКА Касьян.

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Блок питания из автомобильного зарядного устройства

Наверняка, у каждого автолюбителя есть зарядное устройство к аккумулятору. И не в любом устройстве есть встроенный хороший стабилизатор с фильтром на выхое, что проявляется в падении напряжения при больших токах. Я вам предлагаю собрать простую схемку, состоящую из батареи конденсаторов, самого стабилизатора на КРЕН и 2-ух транзисторов. Такой преобразователь даст вам на выходе до 6 Ампер тока. Вообще эту схему можно использовать для блока питания в качестве фильтра и стабилизатора напряжения. Стабилизатор напряжения защитит при больших временных нагрузках от падения напряжения и будет стараться поддерживать определенное значение, а фильтр уберет лишние пульсации, что улучшит характеристики блока питания. Короче, сами смотрите как использовать данную схему, потому что можно и в блок питания поставить дополнительно для улучшения характеристик и в зарядное. Ниже вы видите схему такого устройства, как приставка — стабилизатор к ЗУ авто:

p54e3

Давайте начнем рассматривать схему по порядку. В самом начале мы видим четыре конденсатора С1, С2, С3, С4, которые большую функцию выполняют по фильтрации пульсаций, а в меньшей степени по стабилизации тока. На самом деле, если поставить конденсатор очень большой емкости, то собирать стабилизатор вовсе не надо – у нас и так получится готовый стабилизатор. Большую емкость конденсаторов можно сравнить с обычным аккумулятором, ведь у аккумулятора уже стабилизированное питание. А в конденсаторах залит электролит, электролит заряжается, а значит они подобны аккумуляторам. То есть например, мы подключили усилитель низких частот и на басах (когда ток достигает пикового значения) басы проседают, становятся хриплыми и не четкими, а если мы подключим батарею конденсаторов, то когда ток увеличится на басе, то конденсатор просто отдаст часть энергии и бас будет четким.

В общем выбирайте сами какой делать стабилизатор. Рассчитать энергию конденсатора для нужного тока можно по формулам, которые можно поискать в интернете. Такой стабилизатор + фильтр получится около 100-150 тыс мкф и это дорого. По данной схеме сумма четырех сглаживающих конденсаторов должна составить 20 тыс микрофарад. Дальше по схеме мы видим стабилизатор напряжения собранный на КРЕНке. Стабилизируемый ток будет зависеть от марки КРЕНки, а марку можно выбрать по таблице. Транзисторы образуют мощный эмиттерный повторитель, в результате чего данная схема способна стабилизировать напряжение до 5-6 Ампер.

Если хотите схему сделать более мощной, то можно добавить еще 2 транзистора, тогда такой стабилизатор сможет стабилизировать ток до 10-11 Ампер. То есть, подключаем еще два транзистора базами паралельно к КРЕН второй ноге, два коллектора к плюсу подводимого напряжения и эмиттерами на выход. Далее ставится конденсатор в качестве фильтра большей емкости (6000мкф) и потом два конденсатора малой емкости керамические на 0,1 которые будут подавлять высокочастотные помехи. Транзисторы обязательно нужно установить на теплоотвод – радиатор. При зарядке аккумулятора постоянно следите за тем, как нагревается радиатор. Если он сильно греется, то можете установить кулер на радиатор, который будет охлаждать его. На теплоотвод устанавливают все транзисторы! Теплоотвод, как правило, из алюминия. Для более лучшей теплопроводности покупаем теплопроводную пасту, мажем тонким слоем радиатор и транзистор, ждем 5 минут и плотно прижимаем, закручивая гайкой.

14df959450

Стабилизатор подключается к выпрямителю зарядного устройства. Выход стабилизатора подключаем к заряжаемому аккумулятору. Рекомендуется на выходе поставить предохранитель на 5-6 Ампер, для защиты цепи от короткого замыкания. Так же, если вы хотите установить сигнализатор подачи напряжения, т.е. при включении видеть что устройство работает, то паралельно через резистор установите светодиод. При включении устройств в сеть светодиод будет загораться. Изменяя сопротивление резистора сделайте оптимальную яркость светодиода. Все, схема готова и готова к использованию.

serp1.ru