Справочник химика 21. Ацетилен кислород


Горючая смесь ацетилен кислород - Справочник химика 21

    Все горючие газы в смеси с кислородом или воздухом при атмосферном давлении могут давать взрыв, поскольку газо-воздушная смесь лежит в пределах взрываемости. Из горючих газов, могущих вызвать несчастные случаи, обратить внимание на следующие водород, монооксид углерода, сероводород, светильный газ, метан, этан, этилен, пропан, ацетилен и др. Прежде чем пользоваться горючим газом, его нужно проверить зажечь от той пробирки, которой он проверяется (но не спичкой). [c.7]     Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Надо быть особенно бдительным относительно возможности образования в воздухе лабораторного помещения взрывчатых смесей некоторых веществ в газообразном и парообразном состояниях. Все горючие газы в смеси с кислородом или воздухом при атмосферном давлении могут образовывать взрывчатые смеси, если эта смесь лежит в интервале взрывоопасных концентраций (см. Приложение XIV). Из горючих газов особого внимания в этой связи заслуживают следующие водород, окись углерода, метан, этан, этилен, пропан, ацетилен, сероводород, фосфористый, мышьяковистый и сурьмянистый водороды. [c.171]

    Пламя получают с помощью горелки, к которой подведены два газа и анализируемая проба. В горелке прямого ввода (или горелке полного расхода) пробу в форме раствора распыляют через капилляр и вводят непосредственно в пламя с помощью распыляющего газа, как правило, окислителя. Горючее смешивается с окислителем и пробой у выходного отверстия горелки (рис. 8.1-2). Такое пламя обычно турбулентно. Поскольку горючее и окислитель смешиваются над горелкой, отсутствует риск взрыва, даже если газовая смесь имеет высокую скорость горения, например, ацетилен-кислород (11 м/с). [c.18]

    В Англии выпускается атомно-абсорбционный спектрофотометр Перкин — Эльмер, модель 603. Прибор построен по двухлучевой схеме, скомбинирован с микрокомпьютером. Обеспечивает высокую точность и экспрессность определения. Для зажигания пламени используется горючая смесь кислород—ацетилен. [c.189]

    Прямоточная горелка имеет несколько преимуществ. Она безопасна и не слишком дорого стоит. Газы горючего и окислителя не смешиваются до тех пор, пока они не выходят из горелки горючая смесь образуется в самом пламени. Это дает возможность использовать такие смеси горючего и окислителя, как водород — кислород и ацетилен — кислород, которые при других условиях работы с ними чрезвычайно [c.682]

    Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I), Выбранная газовая смесь определяет температуру пламени. ВоЗ душно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальней шем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получе НИИ ацетилена такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. Прй определении элементов, образующих трудно диссоциирующие соа- [c.20]

    Метод сожжения применяют главным образом для определения метана и его гомологов, для которых до сих пор не найдены подходящие поглотители, а также для определения водорода и иногда окиси углерода. Очень редко сожжением определяют непредельные углеводороды (ацетилен, этилен, пропилен). Анализ газов путем сожжения заключается в том, что к исследуемой газообразной смеси горючих компонентов добавляется либо чистый кислород, либо воздух, а затем газовую смесь воспламеняют электрической искрой (анализ взрывом) или медленно сжигают над накаленной металлической платиной или палладием. Замена при сжигании кислорода воздухом крайне нежелательна, так как при этом в реакции принимает участие только 21% полезного кислорода кроме того приходится сильно сокращать объем газа, взятого для сжигания, что безусловно отражается на точности анализа. [c.158]

    В Советском Союзе в баллонах поставляются во5оро5, азот, аргон, гелий, кислород, хлор, аммиак, ацетилен, смесь пропана с бутаном, закись азота, фосген, х.гористый метилен и ряд других газов. Баллоны с наиболее употребительными газами окрашены в определенные цвета или маркированы цветными полосами. Кроме того, некоторые баллоны различаются по типу резьбы запорного вентиля. Так, в отличие от всех других баллонов баллоны с водородом, этиленом, пропаном и некоторыми другими горючими газами имеют левую резьбу запирающих вентилей. Помимо разницы в резьбе, некоторые баллоны различаются и по способу крепления вентилей тонкой регулировки. Так, например, редукторы для ацетиленовых баллонов приворачиваются при помощи специальных узлов. [c.620]

    Горючим для пламени могут служить природный газ, пропан, бутан, водород и ацетилен. Последний, пожалуй, используют наиболее широко. Обычные окислители — воздух, воздух, обогащенный кислородом, кислород и закись азота. Если требуется горячее пламя, предпочитают смесь закись азота — ацетилен, поскольку она менее взрывоопасна. [c.179]

    Горючие газы, в том числе ацетилен, в смеси с кислородом или воздухом могут воспламеняться или взрываться от искры, нагретого тела или пламени. Однако не всякая газовая смесь может взрываться. Если количество горючего в смеси мало или, наоборот, велико, то смесь зажечь нельзя. Смеси ацетилена с воздухом, в которых ацетилена по объему меньше 2,3% или больше 80%, не взрываются. [c.23]

    Газовая сварка. Ацетилено-кислородная сварка применяется при ремонте стальных деталей небольших размеров изделий из тонкого листового металла и трубопроводов. Кислород доставляется к месту выполнения работ в баллонах, ацетилен также может быть доставлен в баллонах или получен в ацетиленовых генераторах. Газ из баллона или генератора подается в сварочную горелку, туда же подается и кислород. В горелке образуется горючая смесь, которая сгорает у мундштука. [c.67]

    Аце тилен был такасе получен пропусканием метана, нагретого предварительно до 850°, через кварцевую трубку, в которой пoддepiЖивaлa ь пламенная зона с помощью вдуваемого кислорода Температура при этом поднималась до 1000°, а среди прод-уктов были найдены неизменившийся метан, ацетилен, окись углерода и водород. Ацетилен выделяют, растворяя его в ацетоне. Согласно другому методу, ]соторый также основан на неполном сгорании, метан пропускают через железн/ю трубку, выложенную огнеупором, а кислород вводят через ряд отверстий так, чтобы температура в трубке достигала 1000°. Согласно другому видоизменению этого метода горючие газы, как например метан, этан или водород,, смешивают с парами жидких углеводородов, и смесь быстро нагревают до высокой температуры, сжигая ее в смеси с кислородом или с кислородсодержащими газами [c.170]

    Опытные работы по резке смыв -процессом проводили во ВНИИАВТОГЕНМАШе на стали 15ХСНД переносным прибором, изменяющим скорость резки от 10 до 10 000 mmImuh и в НИИМостов на стали 10Г2С1 газорезательной машиной, изменяющей скорость резки от О до 1000 мм/мин. В качестве горючего газа использовали ацетилен и пропан-бутановую смесь кислород чистотой 98,5—98,7%. [c.44]

chem21.info

Ацетиленово-кислородная смесь - Справочник химика 21

    Ацетилен — бесцветный газ, очень ядовит. Смесь его с воздухом или кислородом при поджигании сильно взрывает. В сжатом виде, особенно в жидком состоянии, взрывает даже от слабого толчка. Поэтому его хранят и перевозят в виде раствора в ацетоне. На воздухе горит ярким сильно коптящим пламенем. В струе кислорода сгорает без копоти и дает пламя с очень высокой температурой (2800°С). Ацетиленово-кислородное пламя применяют в автогенной сварке и резке металлов. [c.246]     Все ацетиленовые генераторы и сварочные посты обязательно оборудуются предохранительными водяными затворами низкого или среднего давления. Затвор предназначен для того, чтобы при возникновении обратного удара пламени в газосварочном инструменте взрывная волна не попала внутрь генератора или в ацетиленовую магистраль. Если аппаратура неисправна и в ацетиленовый шланг попадает кислород, то предохранительный затвор не должен пропускать кислород в генератор и в ацетиленовую магистраль. В случае проникновения кислорода в генератор образуется взрывоопасная ацети-лено-кислородная смесь. [c.58]

    Обычно применяемая в автогенной сварке кислородно-ацетиленовая смесь содержит на каждый литр кислорода 0,7 л ацетилена. Рассчитайте, находятся ли эти газы в том соотношении, которое требуется согласно уравнению реакции горения ацетилена, или один из газов имеется в избытке  [c.62]

    В лабораторном масштабе изучались ацетиленовые реакторы поверхностного горения горение происходит на поверхности насадки без видимого пламени. В таких реакторах практически исключается возможность проскока пламени, при этом достигается высокая газовая нагрузка на единицу поверхности насадки (0,3—0,8 м 1м ). Насадкой служили кусочки шамота диаметром 2—3 мм и длиной 30— 40 мм. Для воспламенения метано-кислородной смеси применялся платиновый катализатор, который позволял зажигать смесь при 300° С. Катализатор в значительной степени улучшает стабильность горения и увеличивает возможную газовую нагрузку на реактор до I—1,5 м метана в 1 ч на 1 см насадки. Перепад давления в реакторе при такой нагрузке не превышал 200 мм рт. ст. При поддержании оптимальных параметров образования ацетилена (величина насадки, скорость подачи смеси, соотношение О2 СН4) процесс шел без образования сажи. При этом были получены такие основные показатели  [c.208]

    Наплавка поверхности порошковым металлом может производиться с использованием силы взрыва (детонации). Ацетилен, кислород и дозированное количество порошка подают в питающий резервуар напыляющего устройства специальной конструкции (так называемая детонационная пушка), где смесь воспламеняется запальной свечой четыре раза (в новых конструкциях — восемь раз) в секунду. При высокой температуре, возникающей при этом (см. гл. VII, п. 4), порошок расплавляется, а взрыв сообщает частицам высокую кинетическую энергию, за счет которой частицы выбрасываются из пушки и внедряются в поверхностный слой напыляемой детали. Толщина слоя может быть получена в пределах 0,05—0,25 мм, увеличиваясь при возрастании давления детонации. В промежутках между взрывами через резервуар пропускают азот в одном из источников [32] указано, что N3 пли Аг или Не в количестве 25—55% добавляют во взрываемую кислородно-ацетиленовую смесь. [c.628]

    Аппаратура для кислородно-ацетиленовой сварки схематически изображена на рис. VI.5. Источником тепла при этом виде сварки является смесь кислорода и ацетилена, в которой происходит сгорание ацетилена. Обслуживание стержня производится вручную. Оборудование для кислородноацетиленовой сварки чрезвычайно дешево и транспортабельно. Однако загрязнение сварного шва примесями при этом виде сварки неизбежно, и применение его поэтому допускается только при сварке неответственных трубопроводов диаметром не более 2". Практически в деле изготовления трубопроводов электросварка вытеснила кислородно-ацетиленовую сварку почти полностью. [c.179]

    При пайке кислородно-ацетиленовыми горелками нагрев осуществляют обычно более холодным наружным пламенем. При избытке кислорода в газовой смеси пламя становится окислительным, при избытке горючего газа — восстановительным. Для получения нормального пламени смесь должна содержать горючий газ и кислород в определенном соотношении, различном для разных газов. [c.227]

    Наибольшее распространение получила -конструкция ацетиленового реактора, предложенная Саксе и Бартоломе . В этом реакторе исходная метано-кислородная смесь, проходя через распределительную плиту, разделяется на большое количество мелких струй, горящих короткими факелами. Реакция протекает в слаботурбулентном потоке. [c.146]

    С этой точки зрения при разработке конструкции высокопроизводительного ацетиленового реактора целесообразно исходить из того, что переход от полупромышленной к конечной стадии исследования должен сводиться только к увеличению числа отдельных действующих элементов (источников пламени). Производительность каждого элемента должна быть выше, чем в конструкции Саксе и Бартоломе, тогда метано-кислородная смесь будет равномерно распространяться по всему сечению распределительной плиты. [c.148]

    Сырьем для производства ацетилена методом термоокислитель ного пиролиза метана является природный газ и кислород. Природный газ поступает в отделение пиролиза, дросселируется до давления 2 кгс/см и направляется в реакторы. Газ, нагретый в подогревателе до 350—400°С, направляется в адсорбер сероочистки для удаления сероорганических соединений, далее он проходит фильтр для очистки от механических примесей, после этого нагревается до 450°С и направляется в смеситель. Образовавшаяся метано-кислородная смесь поступает через кольцевую щель горелки в реакционный канал. После выхода из реакционной зоны газы пиролиза подвергаются закалке, охлаждаются до температуры 30°С и направляются в систему сажеочистки. Из ацетиленового реактора они направляются в скруббер первой ступени сажеочистки, где охлаждаются до 60°С и частично очищаются от сажи и смолы. Для более тонкой очистки газы поступают в электрофильтры, после которых охлаждаются и очищаются в пенном аппарате. [c.66]

    Пористые массы в ацетиленовых баллонах подвергаются жест-КИМ испытаниям для обеспечения высокого запаса надежности. В частности, в присоединенной к наполненному баллону трубе взрывают ацетилено-кислородную смесь под давлением 20 ат. При этом возникает мощная детонационная волна. Детонация ацетилено-кислородной смеси является весьма энергичным инициатором взрывного распада ацетилена. [c.194]

    Для синтеза аммиака предлагался катализатор, полученный окислением расплавленного железа или сплавов железа в токе кислорода и нагреванием в тигле, покрытом массой, аналогичной приготовляемой [20]. Катализатор для конверсии водяного газа с водяным паром при 320--330°, стойкий по отношению к таким ядам, как сероводород, приготовляют растворением 100 кг железа в разбавленной азотной кислоте, раствор обрабатывают 10 кг хромовой кислоты и 20 кг хромовокислого калия, осаждают аммиаком при 60 —80°, осадок промывают, смешивают с 1 кг углекислого бария и сушат [318]. Другой активный, стойкий катализатор для синтеза аммиака при температуре 550° и давлении 250 ат [скорость на объем газовой реагирующей смеси (ЗН + Ng 2Nh4) и часовая объемная скорость реагентов равна 15 000] готовят из чистого железа или железосодержащих руд, окисленных в токе кислорода, с добавкой активаторов, например окиси алюминия или азотнокислого калия. Рекомендуется выдерживать расплавленную жидкость при высокой температуре в течение некоторого времени в токе кислорода. При применении железной руды (магнетита или магнитного железняка), содержащей много примесей (4,0% двуокиси кремния, 4,2% окиси магния, 2,8% окиси алюминия, 0,8% окиси кальция и 0,3% марганца), ее плавят на кислородно-ацетиленовой горелке и вводят активаторы, расплавленную массу выдерживают при высокой температуре с тем, чтобы довести до конца реакцию между окисью железа и активатором и удалить серу и фосфор. При приготовлении катализаторов из железной руды рекомендуется смешивать половину количества актцватора с окисью железа, добавляя вторую половину малыми порциями в частично расплавленную массу. Например, 2 кг магнитного железняка смешивают с 50 г окиси алю-Ашния и 100 г азотнокислого калия (добавляемого малыми порциями), смесь частично расплавляют и обрабатывают избытком кислорода. Приготовленный таким образом катализатор выгружают и процесс повторяют [256]. [c.284]

    Далее следует отметить сероуглерод СЗг при длительном вдыхании небольших количеств вызывает тяжелое психическое расстройство N02 появляется, например, при горении кислородно-ацетиленовой горелки в концентрациях, которые могут вызвать смерть СгОз вызывает разрушение носовой перегородки, поэтому хромовую смесь постоянно следует хранить в вытяжном шкафу 0з04 может привести к заболеванию глаз (до потери зрения ). Очень ядовитыми являются также пары С(1, пыль Ве, а также большинство м е-таллоорганических соединений, таких, как N (00)4 [34], Hg( Hз)2 и т. п. даже кратковременное вдыхание паров этих веществ может привести к смерти. [c.621]

    В настоящее время ацетилен получается в промышленности также из парафиновых углеводородов (метана, этана, бутана) или легких нефтяных погонов. Основным условием образования ацетилена из метана является кратковременное, исчисляемое долями секунды пребывание исходного углеводорода в реакционной зоне при высокой температуре (1400—1600 °G) и последующее резкое охлаждение газовой смеси- Необходимая для протекания реакции высокая температура может быть создана электрической дугой (в этом случае процесс шЗыва хся электрокрекингом) или сжиганием части исходного или какого-либо другого углеводорода в кислородном или воздушн-ом пламени (процесс, называемый термоокислительным пиролизом). Во всех случаях в результате реакции образуется сложная газовая смесь, содержащая наряду с ацетиленом непрореагировавшие исходные углеводороды, этилен, водород, высшие ацетиленовые углеводороды, сажу и другие соединения. Чистый ацетилен выделяется обычно из этой смеси в результате серии последовательных операций с помощью селективных растворителей. [c.387]

    Газовая сварка. Ацетилено-кислородная сварка применяется при ремонте стальных деталей небольших размеров изделий из тонкого листового металла и трубопроводов. Кислород доставляется к месту выполнения работ в баллонах, ацетилен также может быть доставлен в баллонах или получен в ацетиленовых генераторах. Газ из баллона или генератора подается в сварочную горелку, туда же подается и кислород. В горелке образуется горючая смесь, которая сгорает у мундштука. [c.67]

    Ударные волны получают в длинных трубах, разделенных разрушаемой диафрагмой на два отделения. Одно заполнено ускоряющим газом, обычно водородом или гелием, при давлении 400—750 мм рт. ст., другое — исследуемым газом (в частности, кислородно-ацетиленовыми смесями) в Аг или Хе при полном давлении в несколько миллиметров ртутного столба. При резком разрыве диафрагмы в секции ударной трубы, где находится смесь при низком давлении, со сверхзвуковой скоростью распространяется плоская ударная волна. При этом температура может быть вычислена на основании термодинамических свойств газа. Для исследования протекаюпщх в ударной волне процессов применяли различные методики [7] анализ газов, истекаюпщх через малое отверстие, с помощью времяпролетного масс-спектрометра [8], измерение плотности газа в ударном слое в зависимости от времени с помощью поглощения мягких рентгеновских лучей [9], исследование излучения 10, а также измерение ионизации в ударной волне методом проб Лэнгмюра [11.  [c.558]

    Для получения покрытий из ПТФХЭ используют преимущественно различные варианты газопламенного напыления [36]. Смесь порошка с воздухом или инертным газом подают из рас-пылитеяй через воздушно-ацетиленовое или водородно-кислородное пламя на изделие, нагретое до 250—800 °С (в некоторых случаях с последующим прогревом еГо при 270 °С), и затем закаливают холодной водой. Во избежание разложения полимера распыление и закалку проводят с максимальной скоростью. ПТФХЭ, например марки волталеф ЗОО-УФ, можно также напылять и на холодное изделие с последующим сплавлением в нети при 265 °С, при этом толщина однослойного покрытия составляет 300—500 мкм. [c.214]

    Пламя горелки необходимой мощности зажигают и регулируют в следующем порядке а) устанавливают рабочее давление кислорода на редукторе в соответствии с эксплуатационной характеристикой б) открывают на 1/4 оборота кислородный и на один полный оборот ацетиленовый вентили и тотчас же зажигают горючую смесь затем полностью открывают кислородный вентиль горелки и ацетиленовым вентилем регулируют пламя заданного состава в) перед регулировкой пламени проверяют наличие запаса ацетилена при полностью открытых вентилях горелки. Длина средней светящейся зоны пламени при этом должна быть не менее четырехкратной длины внутреннего его ядра, что соответствует примерно 15%-ному избытку ацетилена в пламени. Нормальное пламя устанавливается при неполностью открытом ацетиленовом вентиле горелки и имеет ярко очерченное ядро правильной округлой формы. В случае неправильной формы ядра необходимо прочистить и продуть выходной канал мундштука. Мундштуки ирочища-ют деревянной, алюминиевой, медной или стальной полированными иглами. [c.20]

chem21.info

Пламя ацетиленово-кислородное - Справочник химика 21

    Алкины образуют еще один ряд ненасыщенных углеводородов. В молекулах этих соединений имеется одна или несколько тройных углерод-углеродных связей. Простые алкины имеют общую эмпирическую формулу С Н2 2- Простейший представитель ряда алкинов, ацетилен, обладает высокой реакционной способностью. При горении ацетилена в токе кислорода в так называемой кислородно-ацетиленовой горелке образуется пламя с очень высокой температурой, приблизительно 3200 К (см. разд. 21.4). Кислородно-ацетиленовые горелки широко используются при сварке, где требуются высокие температуры. Алкины вообще очень реакционноспособные вещества. Вследствие этого они не столь широко распространены в природе, как алкены, однако являются важными промежуточными продуктами во многих промышленных процессах. [c.416]     Ацетилен — бесцветный газ, очень ядовит. Смесь его с воздухом или кислородом при поджигании сильно взрывает. В сжатом виде, особенно в жидком состоянии, взрывает даже от слабого толчка. Поэтому его хранят и перевозят в виде раствора в ацетоне. На воздухе горит ярким сильно коптящим пламенем. В струе кислорода сгорает без копоти и дает пламя с очень высокой температурой (2800°С). Ацетиленово-кислородное пламя применяют в автогенной сварке и резке металлов. [c.246]

    Эмалевый слой, нанесенный по сухому методу, удаляется с поверхности таких изделий как ванны, раковины, мойки термическим методом, который заключается в следующем. На эмалированную поверхность направляют пламя ацетиленово-кислородной горелки при этом происходит неравномерный прогрев эмалевого слоя, который вследствие этого отделяется от поверхности металла в виде кусков. В течение 7—8 часов один рабочий способен удалить таким способом эмалевый покров с поверхности 5 ванн или 5—6 двойных моек. При этом расходуется 1 баллон кислорода и 20—25 кг карбида кальция. [c.257]

    Применение кислорода. Получаемый в промышленности кислород часто применяют для сжигания в нем различных газов, например ацетилена и водорода (в специальной горелке, состоящей из двух трубок, вставленных одна в другую). Температура ацетиленово-кислородного пламени достигает 3000 °С, в нем плавится железо это пламя применяют для автогенной сварки, резания и сверления металлов. [c.377]

    А. К. Русанов и В. М. Алексеева [77] определяли индий (а также таллий и галлий) непосредственно в цинковых обманках и других минералах при помощи спектрометра Хильгера, возбуждая спектр в высокотемпературном ацетиленово-кислородном пламени. Присутствие таллия и индия устанавливают по появлению зеленой линии Т1 5350,5 А и синей линии 1п 4511,3 А. В пламя вводят 0,2 г порошка цинковой обманки, распределенного равномерным слоем на обработанной сульфатом аммония полоске папиросной бумаги длиной 15 сл1 и шириной [c.207]

    Наиболее распространено в практике спектрального анализа ацетиленово-воздушное пламя часто применяется также ацетиленово-кислородное пламя и несколько реже — пламя светильного газа с воздушным и кислородным дутьём. [c.47]

    Эта таблица показывает, что хорошая чувствительность определений в ацетиленово-воздушном пламени осуществляется лишь для элементов, резонансные потенциалы которых не превышают 2,5—3 V. Как видно из графика рис. 13, уже ацетиленово-кислородное пламя с 7=3300° даёт меньшее различие в интенсивности трудно и легко возбудимых линий и большую абсолютную интенсивность линий таким образом, оно является более универсальным, чем ацетиленово-воздушное пламя. Однако, работа с ацетиленово-кислородным пламенем технически менее удобна. [c.49]

    Большую часть получаемого в промышленности кислорода используют для сжигания в нем различных газов (ацетилена, водорода). При этом пользуются специальной горелкой, состоящей из двух трубок, вставленных одна в другую. Горючий газ, например ацетилен, поступает в пространство между стенками трубок. У выходного отверстия его зажигают и вводят в пламя (по внутренней трубке) струю кислорода. Температура ацетиленово-кислородного пламени достигает 3000° С, в нем плавится железо. Ацетиленово-кислородное пламя применяют для автогенной сварки, резания и сверления металлов. [c.172]

    Изделия с толщиной кромок до 5 мм сваривают внахлестку, а более 5 мм — в стык с У-образной разделкой кромок под углом 90°. При толщине кромок до 3 мм используют пламя водорода в смеси с воздухом, а при большей толщине — водородно-кислородное или ацетиленово-кислородное пламя. Сварку ведут в нижнем положении. При сварке в вертикальном положении для удержания расплавленного металла используют рогатки. [c.157]

    Все эти эффекты интенсивно исследуют. Результаты исследований служат фундаментом для создания большого количества новых высокоэффективных технологических процессов. Речь идет прежде всего о сверлении тонких отверстий, пайке и плавлении некоторых непрозрачных для лазерного излучения тугоплавких материалов, обработка которых обычными способами (газовая и дуговая сварка, кислородное и ацетиленовое пламя, электронный и ионный пучок) затруднена или невозможна. [c.439]

    Результаты тех опытов, которые были проведены у нас на кафедре коллоидной химии И. Ф. Карповой для суспензии стеклянных шариков, полученных при продувании стеклянной пыли через кислородно-ацетиленовое пламя, показали также влияние размеров частиц на электрофоретическую подвижность. Исправление полученных величин путем введения коэффициента 6я в расчетную формулу для -потенциала видно из табл. 15. [c.130]

    Ацетилен — соединение с большим теплосодержанием. Если образование этана из элементов сопровождается выделением 83,5 кДж/моль, то при образовании этилена и ацетилена теплота поглощается (соответственно 52 и 226 кДж/моль). Этим объясняется термодинамическая неустойчивость ацетилена и способность к самопроизвольному распаду со взрывом. Кислородно-ацетиленовое пламя имеет температуру более 3000 °С, в то время как метан позволяет достичь лишь 2000 °С. В баллонах ацетилен хранят в виде раствора (в ацетоне) с пористым носителем, так как работа с неразбавленным газом при давлении свыше 0,15 МПа опасна. [c.70]

    Алкины — углеводороды с тройной связью с общей формулой С Н2я-2. Простейший алкин НС=СН, называемый этином или ацетиленом, широко используется в кислородно-ацетиленовых горелках, в которых пламя имеет очень высокую температуру (3200 К). Алкины, будучи ненасыщенными соединениями, обладают высокой реакционной способностью. Они легко вступают в реакцию присоединения, превращаясь в алкены или алканы и их производные, например  [c.304]

    Наиболее чувствительная линия мышьяка 234,98 нм. Рекомендуется пламя смесп закиси азота с ацетиленом, а также кислородно-ацетиленовое пламя. [c.106]

    Использование спектрофотометра Перкин—Эльмер (модель 303) с Т-образным адаптером (длина 15 см, диаметр 3,5 см) позволяет с высокой воспроизводимостью определять в природных водах С(1, Си и 2п без их предварительного концентрирования (кислородноводородное и кислородно-ацетиленовое пламена). При расходе раствора 4 мл/мин чувствительность определения 0,002 мкг СА/мл. Из 50 исследованных катионов и анионов занижают результаты определения лишь арсенаты, карбонаты, силикаты и тетрабораты введение 400 мг/л комплексона III устраняет их влияние [703]. [c.130]

    Фотометр с монохроматором — селектором волн определенной длины, с фотоумножителем-детектором и горелкой Бекмана. Создают обычно кислородно-водородное или кислородно-ацетиленовое пламя. [c.128]

    Этот элемент может быть определен как эмиссионным, так и абсорбционным методами. Резонансная линия кадмия 326,1 жжк расположена в части спектра, где сильно излучение самого пламени, и поэтому здесь особенно важен выбор рода пламени, при котором отношение интенсивности линии к интенсивности фона наибольшее. Было найдено, что таким пламенем является пламя смеси водорода с воздухом 2 . При использовании комбинированной горелки-распылителя, предназначенной для кислородно-ацетиленового пламени, раствор с 0,5 мкг/мл Сс1 дает отсчет на приборе на 1% больший отсчета для фона пламени. [c.254]

    При использовании купферона к анализируемому раствору, содержащему 100—500 мкг AI, прибавляют 10 мл 1 М раствора ацетата аммония, доводят pH раствора до 2,5—4,5 добавлением кислоты, прибавляют 5 мл 0,1 М раствора купферона и экстрагируют 3 мл или более гексона (метилизобутилкетона). Вместо купферона можно взять теноилтрифторацетон, однако в этом случае pH раствора перед экстракцией должен быть 5,5—6,0. Фотометрируют, используя кислородно-ацетиленовое пламя и комбинированную горелку-распылитель, по пику молекулярной полосы при 484 ммк (фон измеряется при 482 ммк). [c.265]

    КА кислородно-ацетиленовое пламя, [c.236]

    Из перечисленных смесей горючих газов с воздухом наиболее часто в аналитической практике применяется воздушно-ацетиленовое или кислородно-ацетиленовое пламя. [c.83]

    Точное определение содержания индия в цинковых обманках производят путем измерения отношения интенсивности линий 1п 4101,8 А и линии Со 4092,4 А. Для этого в ацетиленово-кислородное пламя вводят на бумажной полоске 0,2 г порошка цинковой обманки, смешанной с 0,05 г окиси кобальта (Соз04). Для более равномерного распределения порошок наносят на бумагу, смазанную сапониновым клеем. Спектр фотографируют при помощи средней модели кварцевого спектрографа Хильгера при ширине щели 0,02 мм. [c.207]

    Ацетиленово-кислородное пламя широко применяется для сварки и резки металлов [1] в этих процессах используется основная масса всего производимого ацетилена они же явились основой для широкого развития промышленности ацетилена. Изучение химизма ацетиленово-кислородного пламени представляет особый интерес, так как это наиболее горячее пламя из всех применяемых для технических целей. Ацетиленово-кислородное пламя состоит из двух резко ограниченных зон. Внутренний светлосиний конус окружен [c.173]

    Обозначения, принятые в таблице ВА — воздушно-ацетиленовое пламя ВВ — воздушноводородное пламя ВП — воздушно-пропановое пламя ВС — воздушно-светильное пламя КА — кислородно-ацетиленовое пламя КВ — кислородно-водородное пламя КЦ — кислородно-циановое пламя орг. — органический растворитель —восстановительное пламя в.— вода. [c.209]

    Ацетилен — газ, в чистом виде имеющий сладкий запах, плохо растворим в воде и очень хорошо в ацетоне, особенно под давлением (в ацетиленовых баллонах). При горении ацетилен дает высокотемпературное пламя, отсюда следует использование его в кислородно-ацетиленовых фонарях. Несмотря на токсичность, в прошлом ацетилен применяли в качестве анестезирующего средства (нарцилен). Высшие алкины являются газами, жидкостями или твердыми веществами, нерастворимыми в воде и имеющими нейтральную реакцию. [c.45]

    Пламя, как источник возбуждения спектра, в настояш ее время не получило пока широкого применения при определении рения. Фасселом с сотр. [768] изучен спектр рения, возбужденный в сильно восстановительном кислородно-ацетиленовом пламени с отношением кислорода и ацетилена, равным 0,8. В качестве растворителя был использован этанол (скорость распыления [c.163]

    Методом пламенной спектрофотометрии определяют содержание рения в молибденитах с чувствительностью до 2,5 мкг/мл [742]. Молибденит растворяют в конц. ИКОз. Из полученного раствора Ке(УП) извлекают этилгексаноном. Органическую фазу, содержащую рений, вдувают в кислородно-ацетиленовое пламя. Абсорбцию света измеряют при 346 нм. Содержание рения устанавливают по калибровочному графику, построенному по стандартным растворам для области концентраций рения 25— 500 мкг/мл. [c.246]

    В эмиссионной фотометрии анализируемый раствор распыляют в высокотемпературное пламя и фотометрируют излучение линии Сс1 3261,0 А. Сами пламена сильно излучают в этой области спектра, поэтому необходимо выбирать такое пламя, при котором отношение интенсивности линии к излучению фона имеет наибольшую величину. Это достигается в смеси водорода с воздухом. При использовании комбинированной горелки-распылителя (кислородно-ацетиленовое пламя) чувствительность определения составляет 0,5 мкг СА1мл [336]. [c.129]

    Для анализа используют воздушно-ацетиленовое пламя [611, 1074, 1412], ацетилено-кислородное [750], водородно-кислородное 880, 881, 887], а также воздушное пламя, насыщенное смесью аргон — водород (чувствительность 0,02 мкг (л 1мл )[1440а]. При использовании пламенного спектрофотометра на основе монохроматора УМ-2 и воздушно-ацетиленового пламени чувствительность открытия галлия (Х=4172,06 А) равна 2 мкг мл [406]. Чувствительность определения галлия с ацетилено-кислородным или водородно-кислородным пламенем значительно повышается при добавлении к испытуемому раствору ацетона [664]. К сожалению, точные указания о границах чувствительности при обнаружении галлия методом фотометрии пламени отсутствуют. Вместо непосредственного обнаружения галлия в спектре пламени его растворов можно применить катодное осаждение галлия на меди или угле с последующим анализом в дуге [1296]. [c.29]

    Как показалн Дин и Леди [5], метод экстра кции является ценным дополнением к методу фотометрии пламени. Они экстрагировали железо в качестве ацетилацетоната и вводили полученный органический раствор в кислородно-ацетиленовое пламя. Этот метод был распространен также и на ряд других металлов. [c.255]

    Марганец можно определять как эмиссионным, так и абсорбционным методом. При работе по первому методу используются линии резонансного триплета 403,1, 403,3 и 403,4 ммк, неразрешаемые в обычно используемых спектрофотометрах. Открываемый минимум составляет около 0,08—0,1 мкг мл Мп при использовании воздушно-ацетиленового пламени и работе с монохроматором, фотоумножителем и зеркальным гальванометром, а также при работе с обычными спектрофотометрами. Повышение чувствительности в 20—30 раз достигается, если оксихинолинат марганца экстрагировать метилизобутилкетоном и вводить в кислородно-водородное пламя непосредственно полученный экстракт [c.285]

    Наиболее пригодными аналитическими линиями являются линии палладия 340,5 и 363,5 ммк. Кислородно-водородное пламя обладает меньщим фоном на используемом участке спектра по сравнению с кислородно-ацетиленовым пламенем. Чувствительность определения палладия в присутствии 50% ацетона в растворе равна 0,1 мкг/мл Рс1, фон пламени по величине эквивалентен 10—15 мкг/мл Р(1. [c.293]

    Практическое применение метод получил для определения цинка, кадмия и ртути Кислородно-водородное или кислородно-ацетиленовое пламя комбинированной горелки-распылителя освещалось излучением ламп с парами цинка, кадмия или ртути. Аналитические линии цинка — 213,8, кадмия —228,8 и ртути — 253,7 ммк. Во всех случаях обнаружено флуоресцентное излучение металлов, интенсивность которого при концентрации растворов солей, вводимых в пламя, 100 мкг1мл составляла [c.298]

    Тозднее горизонтальный адаптер по типу, предложенному Фува и Валли, был довольно успешно использован Кёртиганом и Фельдманом [72] для увеличения чувствительности определения висмута, кадмия, меди, ртути, магния, марганца, никеля, свинца, сурьмы, стронция, теллура, таллия и цинка. Эксперименты проводились с кварцевыми трубками диаметром 1 см и длиной от 20 до 80 см, теплоизолированными снаружи слоем асбеста. Для атомизации растворов применялось в основном кислородно-водородное пламя, хотя, как было выяснено авторами, кислородно-ацетиленовое пламя обеспечивает известные преимущества в отношении [c.230]

    Более того, неполное испарение AI2O3, по-видимому, может сказываться и при измерениях с высокотемпературным кислородно-ацетиленовым пламенем. Рассмотрим в качестве примера результаты работы И. В. Вейц и Л. В. Гурвича [52, 53], в которой измерялась константа равновесия реакции диссоциации АЮ при предположении полного испарения солей, вводимых в кислород-но-ацетиленовое пламя с температурой 3100° К (максимальная температура пламени по расчетам авторов составляет 3150°К). Алюминий вводили в пламя в виде водных растворов солей КА1 (804)2 и AI I3. [c.253]

    Сущность метода состоит в сжатии и нагревании пробы жидкости до определенного давления и температуры и распылении через сопло. Полученный аэрозоль поджигают испытательным кислородно-ацетиленовым пламенем последовательно в различных точках вдоль всего облака аэрозоля. После поджигания испытательное пламя убирают и измеряют время продолжения горения пламени. Результатом определения является макси- мальное время неподдерживаемого горения. [c.770]

chem21.info

В зависимости от соотношения кислорода и ацетилена в горючей смеси, сварочное пламя может быть нормальным, окислительным или науглероживающим

Для нормального пламени характерно отношение ацетилена к кислороду от 1:1 до 1:1,3. В нем отчетливо выражены все три зоны – ядро, средняя зона и факел.

Окисленным называют пламя, в котором есть избыток кислорода. В нем ядро имеет бледную окраску, меньшую длину и размытые очертания. Длина средней части и факела тоже короче. Такое пламя горит с шумом и его температура выше, чем нормального. Оно окислено, окисляет металл сварочной ванны, способствует получению пористости и значительно снижает качество шва. Такое пламя рекомендуется применять при сварке латуней, при пайке высокотемпературными припоями.

Пламя с избытком ацетилена называют науглероживающим. Его ядро также имеет нерезкие очертания, на его конце виден зеленый венчик. Средняя зона этого пламени светлее и почти сливается с ядром. Факел имеет желтоватую окраску, иногда на конце наблюдается копоть. Температура науглераживающего пламени ниже температуры нормального. Это пламя науглераживает металл, делая его хрупким. Его рекомендуется применять при сварке чугуна.

5) Для различной толщины свариваемого металла рекомендуется применять различную мощность свариваемого пламени, которая характеризуется часовым расходом ацетилена в литрах. В процессе сварки пламя не только расплавляет металл, но и защищает расплавленную ванну от вредного влияния кислорода и азота атмосферного воздуха. Поэтому при сварке необходимо, чтобы расплавленный основной металл и конец присадочного металла находились все время в восстановительной зоне пламени (в средней зоне).

Большое влияние на качество шва имеет угол наклона пламени горелки, который берется в зависимости от толщины свариваемых заготовок. Чем больше толщина заготовки, тем больше угол наклона горелки (Рис. 3).

 

 

 

Рис.3. Угол наклона горелки в зависимости от толщины в зависимости от толщины свариваемого металла

 

Изменением угла наклона мундштука горелки к поверхности свариваемого металла можно изменять интенсивность расплавления металла. Наиболее интенсивно металл расплавляется при перпендикулярном расположении мундштука к поверхности металла. При сварке же очень тонких и, особенно, легкоплавких металлов, мундштук следует располагать почти параллельно поверхности свариваемого металла. При сварке тонколистового металла и соединений с отбортовкой кромок, горелку следует передвигать прямолинейно, без поперечных колебаний. Если же свариваемый металл толстый – толщиной более 3 мм, то горелка должна совершать поперечные колебания наряду с прямолинейным перемещением, чтобы дольше воздействовать пламенем на металл.

6) В зависимости от направления перемещения горелки и присадочного прутка по шву различают левый и правый способы сварки(Рис.4).

При левом способе впереди перемещается присадочный металл, а за ним горелка. Левый способ более простой и применяется при сварке листов толщиной до 5 мм.

При правом способе впереди перемещается горелка, а за ней присадочный металл. Правый способ сложнее левого, но более производительный и экономически выгодный. Применяется этот способ при сварке более толстого металла – толщиной более 5 мм.

 

А б

Рис. 4.Способы газовой сварки:

А - левый; б – правый

1 – присадочный пруток; 2 – газовая горелка

 

Применение левого и правого способа в большей степени все-таки зависит от практических навыков сварщика.

Газовую сварку можно выполнять в различных пространственных положениях: нижнем, вертикальном, горизонтальном и потолочном.

Вертикальные швы выполняют левым способом, а горизонтальные и потолочные – правым.

 

 

2.1.3. Используемые газы.

 

Кислород. Основное назначение кислорода, используемого при газопламенной обработке – интенсифицировать горение газа с возможно большим тепловыделением. Кислород применяют трех сортов:

Газообразный технический первого сорта чистотой 99,7%;

второго сорта чистотой 99,5%;

третьего сорта чистотой 99,2%.

Примеси азота и аргона в техническом кислороде составляют 0.3…0,8%. Кислород при нормальной температуре представляет собой газ без цвета и запаха. Кислород получают разделением воздуха методом глубокого охлаждения или получают электролизом – разложением воды припропускании через нее электрического тока. Температура сжижения кислорода при нормальном атмосферном давлении -182,90 С, в твердое состояние он переходит при -218,40 С. Жидкий кислород транспортируют в специальных теплоизолированных сосудах – танкерах, газообразный – в стальных баллонах под давлением 15 МПа (150 атм). Танкеры, баллоны и другое оборудование для кислорода окрашивается в голубой цвет.

 

При соприкосновении с маслами кислород взрывается!

Ацетилен – горючий газ, представляющий собой химическое соединение углерода с водородом. Ацетилен получают из карбида кальция или из природного газа, нефти, угля. Ацетиленполучают из карбида кальция при взаимодействии последнего с водой. Реакция протекает с выделением значительного количества тепла

 

СаС2 + 2Н2О = С2Н2 + Са (ОН)2

Теоретически для разложения 1 кг карбида кальция требуется 0,562 дм3, а практически во избежание перегрева ацетилена расходуют 5-20 дм3 воды. Средний выход ацетилена составляет 0,23-0,28 м3/кг.

Карбид кальция получают сплавлением извести и кокса в электрических печах при температуре 1900 …23000 С. Карбид кальция транспортируют в стальных герметически закрытых барабанах.

При температурах от -82,40 С до -83,60 С ацетилен превращается в жидкость, а при понижении температуры до -850 С переходит в твердое состояние. В жидком и твердом состоянии ацетилен очень взрывоопасен и взрывается от трения или удара. Ацетилено-кислородная смесь очень взрывоопасна при наличии в ней 2,9 … 93% ацетилена (по объему). Взрывоопасна и ацетилено-воздушная смесь при содержании в ней ацетилена даже до 2,2%.

Ацетилен для сварки поступает из генератора, в котором его получают или из металлических баллонов. В баллонах ацетилен находится в смеси с ацетоном под давлением 1,5-1,6 МПа. Для безопасности баллон с ацетиленом заполняют древесным углем, создающим систему капиллярных сосудов.

megaobuchalka.ru

Ацетилен взрыв с кислородом - Справочник химика 21

    Имеются также предположения, что при реакции между ацетиленом и кислородом образуются особого рода перекиси, обладающие исключительной неустойчивостью [4]. Период жизни их настолько мал при обычных условиях, что пока не удалось их выделить и подробно изучить. Чрезвычайно неустойчивые в обычных условиях перекиси могут, однако, обладать определенной стабильностью при низких температурах. Как все перекиси, они могут разлагаться с выделением тепла от механических воздействий и служить импульсом взрыва. [c.100]     Парсонс испробовал все известные методы синтеза и ввел в практику новые, а именно стрельбу высокоскоростной винтовочной пулей в полость, содержащую испытуемое вещество. В первом варианте использовалось ружье дл охоты на уток калибра 0,9 дюйма, которое стреляло стальным поршнем в цилиндр, содержащий ацетилен и кислород. Ружье заряжалось двумя драхмами черного охотничьего пороха, причем это количество было определено предварительными испытаниями . Компрессия составляла 288 к 1, и Парсонс рассчитал, что при взрыве достигаются давление 15 000 атм и температура 15 250° С, хотя последняя оценка весьма оптимистична. Еще более высокие давления ожидалось получить при стрельбе из ружья калибра 0,303 дюйма в небольшое количество графитовой шихты. По расчетам Парсонса, выполненным на основании изучения деформаций блока, в который выстреливалась пуля, при этом мгновенно возникало давление, достигающее 300 ООО атм. В этих экспериментах получалось лишь несколько очень мелких кристаллов, похожих на алмаз . Парсонс полагал, что только лишь приложение высоких давлений не может привести к образованию алмазов хотя бы потому, что они составляют от четверти до половины давлений, существующих в центре Земли . Он пришел к выводу, что для успешного синтеза алмаза требуется присутствие железа, несмотря на то что получил отрицательные результаты, когда повторял опыты Муассана при давлениях по крайней мере в три раза больших, чем те, которых мог достичь Муассан. [c.68]

    Гордеев и Матвеев исследовали [215] инициирование взрыва кавитацией (нри 1 атм) следующих ЖВВ нитроглицерин (НГЦ), тетранитрометан (ТНМ), нитрометан (НМ), растворы бензола, гептана, метанола в ТНМ, раствор метана в жидком кислороде при температуре кипения азота) и гетерогенная система твердый ацетилен — жидкий кислород (так же при температуре кипения азота). Была разработана оригинальная методика создания крупных кавитационных полостей, позволившая впервые подробно изучить явления. Использовалась пробирка с хорошо пригнанным поршнем, под который вводили исследуемое вещество. Жидкостной затвор в виде конической воронки, заполненной тем же 13В, позволял изолировать жидкость под поршнем от воздействия атмосферного давления в течение нескольких миллисекунд. Быстрое выдергивание поршня создает растягивающее напряжение в жидкости, сплошность ВВ нарушается и образуются каверны Взрыв возбуждался при захлопывании кавитационных пузырьков в растворах бензола или гептана в тетранитрометане. В техническом НГЦ взрывы удалось возбуждать путем применения поршня с заостренным концом. [c.267]

    При смешивании ацетилена с газами, вступающими с ним в реак- цию, способность таких смесей к взрыву возрастает. Так например, ацетилен в смеси с хлором взрывается даже при действии света. В смеси с кислородом ацетилен взрывается при атмосферном давлении, если нагреть смесь до температуры 300° С, причем содержание ацетилена в смеси может колебаться в весьма широких пределах — ют 2,3 до 93%. [c.16]

    Газообразный винилацетилен не окисляется кислородом воздуха, но в жидкой фазе легко образует перекиси, которые остаются после испарения винилацетилена в виде желтой взрывчатой массы. Винилацетилен способен полимеризоваться со взрывом кислород инициирует реакцию полимеризации, а вода замедляет этот процесс. Поскольку в молекуле винилацетилена имеются двойная и тройная связи между атомами углерода, он легко вступает во все химические реакции, свойственные ацетилену и этилену. Следует отметить, что гидрирование винилацетилена проходит через стадию образования бутадиена  [c.37]

    Если ацетилен взрывается в воздухе и кислороде, то вслед за ним возникают реакции соединения углерода и водорода с кислородом, что усиливает эффект взрыва. [c.375]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен— жидкий кислород с содержанием 5—6% ацетилена по массе. Прн вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает 1,5—2 мм, величина начального давления, необходимого для создания импульса и возникновения взрыва, значительно уменьшается. Для того чтобы в воздухоразделительных аппаратах не накапливалось большое количество ацетилена, необходимо устранять источники загрязнения воздуха ацетиленом, строго соблюдать установленный режим работы и регулярно производить анализ жидкого кислорода из конденсатора и кубовой жидкости на содержание ацетилена.  [c.705]

    В смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен — жидкий кислород. Эта смесь взрывается при наименьшей величине начального импульса (механического удара, ударной газовой волны). Установлено также, что при содержании ацетилена в жидком кислороде ниже предела его растворимости в кислороде система не взрывоопасна. Взрыв может происходить при насыщении жидкого кислорода ацетиленом выше предела растворимости, при выделении ацетилена в виде суспензии или при высаживании его на стенках сосуда в твердом виде. [c.695]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен — жидкий кислород, содержащей 5—6 вес. % ацетилена. При вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает 1,5—2 мм, величина начального давления, необходимого для создания импульса и возникновения взрыва, значительно уменьшается. [c.697]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен— жидкий кислород с содержанием 5—6% ацетилена по массе. При вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает [c.705]

    Ацетилен транспортируют в стальных баллонах, где он содержится растворенным в ацетоне под давлением до 25 ат. Баллоны заполняют пористой массой, адсорбирующей раствор ацетилена при этом ацетон растворяет около 300 объемов ацетилена. Хранить в баллонах жидкий ацетилен нельзя из-за опасности взрыва. Разложение жидкого ацетилена со взрывом происходит под влиянием тепла, ударов, трения, сжатия, под действием запала. В смеси с кислородом ацетилен взрывает при атмосферном давлении. В смеси с хлором ацетилен взрывает уже под действием света. [c.52]

    В смеси с кислородом ацетилен взрывает при атмосферном давлении. [c.104]

    При атмосферном давлении чистый газообразный ацетилен безопасен, но под давлением выше 2 ат или в жидком виде он становится взрывоопасным. Жидкий ацетилен представляет собой сильно взрывчатое вещество уже при обыкновенной температуре. Разложение его со взрывом происходит под влиянием тепла, ударов, трения, сжатия, под действием запала. В смеси с кислородом ацетилен взрывает при атмосферном давлении. [c.48]

    Ацетилен дает с воздухом и особенно с кислородом очень взрывчатые смеси. При сжатии чистый неразбавленный ацетилен может распадаться со взрывом и с образованием сажи. [c.249]

    Наиболее характерные случаи аварий вызваны повышением содержания кислорода в газах пиролиза с последующим их взрывом в аппаратуре, загоранием ацетилена в трубопроводах в момент сброса взрывоопасных газов на факел, подсосом воздуха в аппаратуру с ацетиленом, загоранием полимеров при их выгрузке и транспортировании из испарителей. [c.30]

    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    Ацетилен, попадая в воздухоразделительные установки в количестве, превышаюш,ем его пределы растворимости в жидком кислороде или азоте, выпадает в твердом виде, осаждается на трубках конденсатора. Замороженный твердый ацетилен представляет большую опасность. При нагревании он может полимеризоваться или переходить в неустойчивое взрывчатое комплексное соединение. Большинство аварий, связанных со взрывами ацетилена, происходило во время отогрева или повторного запуска ВРУ. Максимальная растворимость ацетилена в жидком О2 составляет-2,28 см /л ири температуре сжижения кислорода. В соответствии с [c.370]

    Основные опасности при эксплуатации кислородных баллонов обусловлены возможностью их взрыва при неблагоприятных обстоятельствах, связанных с утечкой кислорода или попаданием в баллоны органических примесей. В практике отмечались случаи разрушения баллонов вследствие попадания в них горючих газов. Загрязнение баллона горючим газом даже в незначительном количестве представляет большую опасность. Такие случаи происходили при ошибочном использовании пустого кислородного баллона (в отсутствие давления газа внутри) для ведения автогенных работ. В результате горючий газ (ацетилен, пропан, бутан и др.), имея более высокое давление, через автогенную горелку проникал в кислородный баллон. Подобные случаи возможны при ведении автогенных работ с неисправными редукторами, горелками или вентилями, когда давление горючего газа превышает установленные пределы и создаются условия проникновения этого газа в кислородный баллон. [c.378]

    Известен случай, когда на одном предприятии вследствие крайней нерегулярности слива жидкого кислорода из отделителя и повышенной загрязненности перерабатываемого воздуха в слитом жидком кислороде были визуально обнаружены плавающие капли другой жидкости. Анализом было установлено, что эти капли состояли в основном из этилена и пропилена. В состаЕ капель также входили ацетилен, бутилен и другие углеводороды. Опасность такой гетерогенной системы подтверждается тем, что на этом же предприятии ранее произошел взрыв в ведре с жидким кислородом, слитым из отделителя. [c.20]

    Важным выводом из рассматриваемой работы является также то, что взрывы легко инициировались в смесях жидкого кислорода с этиленом, ацетиленом и другими углеводородами при содержании их, меньшем, чем составы нижних пределов воспламеняемости в газовой фазе, но при условии, если был превышен предел их растворимости в жидком кислороде. Авторами была проде- [c.46]

    Данные испытаний подтвердили, что активный глинозем и силикагель испытанных марок с адсорбированными совместно продуктами разложения масла и ацетиленом в условиях проведенных испытаний в среде жидкого кислорода не взрываются от удара, искры и детонатора. [c.63]

    При вспышках в клапанных коробках и нагнетательных трубопроводах компрессоров, работающих при повышенных температурах, количество образующихся продуктов разложения масла может быть очень большим. Известны случаи, когда при анализах жидкого кислорода, взятого из конденсаторов после вспышки в компрессоре, обнаруживали ацетилен в количествах, превышающих его растворимость в жидком кислороде. Известны также случаи взрывов в конденсаторах и адсорберах, которые произошли непосредственно после вспышки в компрессоре. [c.133]

    Горючие газы. Горючие и поддерживающие горение сжатые и сжиженные газы (ацетилен, водород, кислород, бутан и др.) получают и хранят в баллонах. Работа с газами, находящимися в баллонах, требует большой осторожности, внимания и строгого соблюдения установленных правил обращения с ними. При нарушении этих правил и инструкций может произойти взрыв баллона с тяжелыми для работающего последствиями. Неопытным работникам, приступающим к работе с горючими газами, находящимися в баллонах под большим давлением, необходимо тщательно однакомиться с правилами о порядке работы с данным газом. [c.118]

    Проведенные опыты в СССР (3. П. Басыров) и за рубежом (Карват) показали, что в смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен—жидкий кислород эта смесь взрывается при наименьшей величине начального импульса (механического удара, ударной газовой волны). Установлено также, что при содержании ацетилена в жидком кислороде ниже предела его растворимости в кислороде система не взрывоопасна. Взрыв может происходить при насыщении жидкого кислорода ацетиленом выше предела растворимости, при выделении ацетилена в виде суспензии или при высаживании его на стенках сосуда в твердом виде. Такие углеводороды, как метан, этан, этилен, достаточно хорошо растворяются в жидком кислороде и воздухе и поэтому не накапливаются в аппаратах в твердом виде. Растворимость метана, например, в 300 раз больше, чем ацетилена меньшей растворимостью, чем указанные выше углеводороды, обладают пропан, пропилен, бутан и бутилен поэтому они представляют большую опасность в случае высокого содержания их в перерабатываемом воздухе. Наиболее опасен пропилен по способности к взрыву он находится на втором месте после ацетилена. [c.703]

    Ударные волны в ацетилене под давлением 30 ат, возникающие при разрыве алюминиевой диафрагмы азотом под давлением 100—135 ат, не вызывали воспламенения ацетилена [10]. Внутренний диаметр трубок, в которых проводились эти испытания, составлял 4, 8 и 12 мм. Время разрыва диафрагмы 1 мсек. В трубке диаметром 7,6 см через ацетилен распространялись ударные волны, возникающие при разрыве мягкого никелевого диска, установленного между фланцами, которые разделяли трубку на длинную камеру низкого давления, где содержался цетилен (3 ат), и короткую камеру высокого давления [11]. Взрыва ацетилена не происходило, если в качестве толкающего газа служил азот под давлением 90 ат. Но при использовании воздуха под давлением 10 от или кислорода под давлением 18 ат ацетилен взрывался. Это свидетельствует о том, что во фронте ударной волны происходит некоторое смешение толкающего газа и ацетилена. Ударная волна, возникающая при использовании кислорода под давлением 65 ат, инициировала взрыв в ацетилене, давление которого составляло всего [c.451]

    В этом направлении следует отметить первые работы Бона и Андрью [7]. Они показали, что реакция между ацетиленом и кислородом в запаянной трубке при атмосферном давлении начинается при температуре 250° и быстро протекает при 300°. Для смесей 2С.,Н2- -02 и С Нг-)- разложение со взрывом наступает при 350°, а для смеси 2С2Н 302 —приблизительно при 375°. В ранней стадии реакции образуются одновременно окись углерода и формальдегид. [c.175]

    В Гётеборге (Швеция, 1971 г.) на строительной площадке под открытым небом находились 78 баллонов со сжиженным пропаном (для газосварки и газорезки). Вблизи площадки загорелось строительное сооружение и через 10 мин взорвались дэа баллона. Тушение пожара пришлось вести из укрытия, чтобы не подвергать опасности пожарных. Взорвались 30 газовых баллонов, из которых 24 содержали сжиженный пропан, четыре — кислород и два — ацетилен. После пожара на многих баллонах, содержащих сжиженный пропан, были обнаружены небольшие трещины. Некоторые баллоны разорвались на куски, а два баллона от взрыва раскатались до плоского листа. От взрыва баллонов сильно пострадал четырехэтажный жилой дом, находившийся на расстоянии 25 м от места пожара. [c.143]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    Для предупреждения взрыва газов в аппаратуре, в рабочих помещениях и наружных установках производства ацетилена из метана предусматривают сигнализацию о достижении температуры компримируемого. ацетилена-концентрата 90 °С и систему автоматического отключения компрессора при температуре газа 100°С. Вакуум-насосы и вакуум-компрессоры снабжают устройствами постоянного автоматического контроля содержания кислорода. При содержании кислорода в ацетилене 0,2% (об.) сигнализация срабатывает. В помещениях, опасных с точки зрения выделения газа, устанавливают газоанализаторы. Сигнализаторы наличия горючих газов должны настраиваться на концентрацию 20% от нижнего предела взрываемости. [c.33]

    При эксплуатации взрывоопасных производств неоднократно происходили взрывы в результате воспламенения огнеопасных веществ. В ряде случаев взрывы были вызваны проскоком газов, воспламенявшихся в присутствии кислорода. В производстве ацетилена, а также в ряде других производств, в которых присутствует ацетилен, особую опасность представляет образование ацети-ленистой меди, которая на воздухе может взорваться. Поэтому з производствах, связанных с применением газовых фракций, содержащих ацетилен, не допускается применение оборудования и деталей из меди. В процессах, связанных с переработкой ацетилена на. медьсодержащем катализаторе, принимают другие меры, исключающие образование ацетиленидов меди. Например, для предупреждения образования металлической меди и контакта ее с ацетиленом процесс ведут в кислой среде солей меди. [c.337]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Предполагают, что ацетилен и закись азота попали в конденсатор в результате частичной регенерации силикагелевого фильтра во время отключения установки без полного размораживания за шесть месяцев до взрыва. Оставалось неясным, почему в течение шести месяцев не взорвалась взрывчатая смесь в конденсаторе, если она в него попала. Исследования показали, что твердый ацетилен очень медленно растворяется в жидком кислороде. Растворимость же закиси азота приблизительно в 27 раз больше растворимости ацетилена. Твердое вещество, отложившееся виачале, преимущественно содержало закись азота [90% (мол.)], а поэтому было невзрывоопасным. Как показали расчеты и подтвердили эксперименты, через шесть месяцев твердый слой ацетилена толщиной 1 мм растворился, что и привело к образованию взрывчатой смеси. [c.372]

    Для оценки возможности образования взрывоопасных концентраций рассмотрим условия взрываемости смеси С2Н2, О2 и СН4 (см. рис. 23,6), которая в какой-то мере характеризует состав газов пиролиза. Взрыв данной смеси при содержании около 10% ацетилена возможен только в том случае, если в ней находится не менее 40% кислорода. Практически это невозможно, так как при таком содержании кислорода в газах пиролиза ацетилен отсутствует. [c.58]

    С. Технический ацетилен, получаемый из карбида Kajibuw , пахнет неприятно из-за имеющихся в нем примесей. На воздухе ацетилен горит сильно коптящим пламенем. При его сгорании выделяется большое количество теплоты. Поэтому ацетилен в смеси кислородом широко используют для сварки и резки металлов (автогенная сварка температура пламени до 3150 С). Взрывоонзсен смеси с воздухом, содержащие от 2,3 до 80,7% ацетилена, взрывают от искры. Трудно растворим в воде под небольшим давле)1ием (1,2—1,5 МПа) хорошо растворяется в ацетоне (до 300 объемов) и в таком виде безопасен. [c.473]

    В бывшем Институте азота (ГИАП) опыты Поллит-цера были повторены в 1937—1938 гг. в стеклянных сосудах, но при этом ни разу не удалось взорвать смесь жидкого кислорода с твердым ацетиленом. Смесь взрывалась только при добавлении 1 г озона на 1 дм кислорода [17]. [c.45]

    Твердый ацетилен в жидком азоте, содержащем до 2% кислорода, не взрывается при давлении разрыва диафрагмы 13,3 Мн1лё (133 ати). [c.55]

    При внедрении адсорберов ацетилена в промышленные установки в СССР и за границей были проведены опыты по изучению взрываемости силикагеля, насы-шенного ацетиленом в динамических условиях, в среде кубовой жидкости, а также силикагеля, насыщенного ацетиленом в статических условиях, в среде жидкого воздуха. Результаты опытов показали, что ацетилен, адсорбированный на силикагеле, в обогащенном жидком воздухе и в жидком кислороде не взрывается. Однако при эксплуатации воздухоразделительных установок имело место несколько взрывов в адсорберах. В связи с этим под руководством И. П. Ишкина была еще раз проверена взрываемость системы адсорбированный ацетилен — адсорбент — жидкий кислород, а также системы адсорбированные продукты разложения масла — адсорбент — жидкий кислород, данные по взрываемости которых отсутствовали. [c.61]

    Из всех примесей воздуха наиболее опасным для воздухоразделительных установок считают ацетилен, так как он химически неустойчив и активен, что объясняется наличием тройной углеродной связи. Как было показано в главе II, ацетилен в смеси с жидким кислородом является наиболее чувствительным к импульсу удара из всех исследованных углеводородов. Рядом исследователей было показано, что система жидкий кислород — твердый ацетилен становится наиболее чувствительной в тех случаях, когда кристаллы ацетилена при испарении жидкого кислорода начинают оголяться и сообщаются с газообразным кислородом. Известно, что твердый ацетилен может взрываться и при отсутствии кислорода, но для этого необходим очень мощный импульс. Так, по литературным данным [45], энергия зажигания твердого ацетилена составляет при давлении 0,14 Мн мР-(1,4 кГ см ) более 11 дж, а энергия зажигания газооб-зазного чистого ацетилена при том же давлении 10 дж. 3 то же время энергия зажигания ацетилено-кислород-ных смесей при давлении 0,1 Мн1м (1 кГ смР ) составляет всего 0,019 мдж, или в 5X10 раз меньше, чем энергия, необходимая для зажигания твердого ацетилена. [c.99]

    Для ацетилено-кислородной сварки наиболее безопасно и удобно использовать ацетилен из баллонов, получаемых на наполнительных станциях, однако ацетилен часто получают разложением карбида кальция водой в передвижных генераторах. Эксплуатация генераторов может оказаться опасной по ряду причин, главными из которых являются повышение температуры или давления ацетилена в генераторе, загрузка генератора карбидом несоответствующей грануляции, образование взрывчатых смесей ацетилена с воздухом или кислородом или образование врывчатых соединений ацетилена, отсутствие или ненормальная работа водяного предохранительного затвора. Проникновение воздуха в аппарат в случае неисправности водяного затвора может привести к взрыву генератора вследствие обратного удара пламени горелки. [c.75]

    В обычных условиях горение представляет собой процесс окисления или соединения горючего вещества и кислорода воздуха, сопровождающийся выделением тепла и света. Однако известно, что некоторые вещества, папример сжатый ацетилен, хлористый азот, озон, взрывчатые вещества, могут взрываться и без кислорода воздуха с образованием тепла и пламени. Следовательно, горение может явиться результато.м не только реакции соединения, но и разложения. Известно также, что водород и многие металлы могут гореть в атмосфере хлора, медь — в парах серы, магний — в диоксиде углерода и т. д. [c.119]

chem21.info

Кислород производстве ацетилена - Справочник химика 21

    Делаются попытки усовершенствовать производство карбида кальция, однако это связано с большим расходом электроэнергии и сырья, высокими капиталовложениями и себестоимостью кроме того, подобные установки технологически трудноуправляемы. Было предложено, например, для получения необходимого тепла сжигать (в присутствии кислорода) часть кокса для уменьшения расхода электроэнергии. При этом образуется много окиси углерода, использование которой в процессе также может снизить себестоимость ацетилена. В настоящее время, однако, большую часть ацетилена получают старым методом (из карбида кальция). Карбид кальция обладает тем преимуществом, что из него получается ацетилен 97— 98%-ной концентрации, поэтому дальнейшая его очистка очень проста его легко транспортировать. Ацетилен же, полученный из ме-. тана (и других углеводородов), требует трудоемкой операции выделения его из газовых смесей и транспортирования в резервуарах под давлением. Критерием выбора конкретного процесса получения ацетилена из метана (или его гомологов) служат его основные характеристики (термодинамика, кинетика, механизм реакции). [c.99]     Ацетальдегид на указанном производстве получался по реакции Кучерова — гидратацией ацетилена в сернокислой среде в присутствии солей двухвалентной ртути. Процесс осуществлялся по следующей схеме в гидрата-тор загружалась кислота и ртуть система продувалась азотом до содержания кислорода в отходящем азоте менее 1 % включался водокольцевой насос, и ацетилен, барботируя через слой контактной кислоты, реагировал с водой с образованием ацетальдегида. [c.224]

    Для выделения водорода из газов коксования и пиролиза нефти необходимы специальные установки низкотемпературного фракционирования, аналогичные тем, которые применяют при производстве кислорода. Этот метод выгоден, если одновременно выделяют также и другие газы (этилен, этан, ацетилен), которые затем можно перерабатывать. [c.215]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Для предотвращения накопления опасных примесей прибегают к сливам жидкого кислорода, удорожающим производство, но и этот прием не исключает возможности взрывов. Наиболее эффективным методом является тщательная очистка разделяемого воздуха от вредных примесей, для чего иногда используют адсорбцию на силикагеле. При этом эффективно извлекается только ацетилен, но не алканы. Весьма эффективной очисткой является окисление ацетилена на катализаторах из окислов металлов при небольшом подогреве (150—180°С). [c.80]

    При производстве ряда важных продуктов из ацетилена, в частности хлоропрена, бутиндиола, к ацетилену предъявляют требования, ограничивающие содержание в нем кислорода (не более 0,005% (об.). Для безопасного производства указанных выше продуктов необходимо контролировать содержание кислорода в ацетилене. [c.227]

    При производстве кислорода загрязнение ацетиленом воздуха, засасываемого компрессорами, может привести к взрыву кислородных аппаратов, поэтому разрыв между зданиями ацетиленового производства и цехами разделения воздуха должен быть не менее 300 м, причем здания ацетиленового производства должны располагаться по отношению к этим цехам с подветренной стороны. [c.167]

    Площадку подготовительных работ размещают в соответствии с проектом производства работ в непосредственной близости от объекта монтажа и обеспечивают необходимыми подъездными путями для подачи оборудования. Рядом с площадкой подготовительных работ устраивают временные сооружения для складирования такелажных приспособлений, хранения мелких узлов и деталей кладовую для инструмента конторку для производителя работ необходимые бытовые помещения навесы для хранения баллонов с кислородом и ацетиленом. [c.34]

    Анализ содеря ния углеводородов, особенно ацетилена, в жидком кислороде очень важен для качества и безопасности производства жидкого кислорода. Поскольку ацетилен — наиболее критическая примесь, требования к контролю качества не позволяют использовать анализатор полного состава углеводородов и поэтому неотъемлемой частью такого контроля должен быть хроматограф. При этом важной частью анализа является дозирование, Главное затруднение заключается в проблеме испарения. Обычная система дозирования, применяемая в анализе СНГ, не годится, так как она изготовлена из нержавеющей стали, т. е. материала с довольно низкой теплопроводностью. Поэтому, если использовать нержавеющую сталь, углеводороды будут концентрироваться в испарителе, отдельные холодные места которого имеют температуру ниже —90°С. [c.126]

    Горение большинства веществ прекращается при снижении содержания кислорода в окружающей среде (азоте) до 12—16% [284] (или 11,0—13,5% [285]), а этилена и бутадиена — 10,0— 10,4% [286]. Исключение составляют вещества, обладающие широкой областью воспламенения, — водород, ацетилен, оксид углерода для них эта величина не превышает 5%, но в газах битумного производства они не присутствуют или присутствуют. практически в незначительных количествах. При хранении битумов в резервуарах пожаробезопасное содержание кислорода зависит от природы инертного газа (азота, водяного пара, диоксида углерода), т. е. флегматизатора, и составляет от 10 до 15% [209]. Эффективность действия,флегматизатора зависит от его свойств и пропорциональна отнощению теплоемкости к теплопроводности [287]. [c.176]

    Получение и очистка исходного этилена. Материалом для производства этилена на одном из заводов Германии является этан или ацетилен. Этан подвергают дегидрированию в специальных печах в присутствии кислорода воздуха приблизительно при 800 . Этилен получается по реакции [c.80]

    Ацетилен является эндотермическим соединением с энтальпией образования -1-227,4 кДж/моль. Поэтому, при сгорании его в кислороде выделяется большое количество тепла и развивается высокая температура, достигающая 3150°С. Это обусловило использование ацетилена для сварки и резки металлов, на что расходуется до 30% всего его производства. Вследствие высокой взрывоопасности ацетилен хранится и транспортируется в баллонах, заполненных древесным углем, или в растворе в ацетоне под давлением 1,5—2,5 МПа. [c.244]

    Свыше 60% всего промышленного кислорода используется в металлургии. При выплавке чугуна и стали (в доменном, кислородно-конверторном и мартеновском производствах) для интенсификации процессов окисления применяется кислородное дутье или дутье обогащенным кислородом воздухом. Кислород в смеси с ацетиленом используют также для сварки и резки металлов. Широкое применение кислород находит практически во всех отраслях химической промышленности. Кислород используют в лечебных целях в медицине (кислородные подушки, кислородные коктейли и др.). [c.359]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]

    Ацетилен. Ацетилен служит исходным сырьем для синтеза большого числа продуктов нефтехимической промышленности. Растущий из года в год спрос на ацетилен вызвал необходимость разработки новых экономичных способов его получения. В настоящее время в промышленности освоен способ производства ацетилена из природного газа — термоокислительным пиролизом метана, т. е. расщеплением метана за счет сжигания части газа с кислородом, подаваемым в процесс. [c.29]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]

    Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затрудненном дыхании. [c.455]

    Окислители, имеющие большое значение в технике и лабораторной практике. Кислород. Применяется для интенсификации производственных процессов в металлургической и химической промышленности (в доменном процессе, в производстве серной и азотной кислот и т.д.). Кислород используется в смеси с ацетиленом для получения высоких температур (3500 °С) при сварке и резке металлов. Кислород широко применяется в медицине. Вдыхание 40—60 %-ной смеси кислорода с воздухом ускоряет процессы окисления в организме, при этом уменьшается нагрузка на сердце и легкие. Мозг и сердце — основные органы управления нашим организмом — являются и основными потребителями кислорода, доставляемого кровью. Причем мозг потребляет почти в 20 раз больше кислорода, чем сердце. Лучшее средство борьбы с кислородной недостаточностью — пребывание на свежем воздухе. [c.128]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    Окисление ацетиленовых углеводородов также ле представляет пока самостоятельного синтетического интереса. Каталитическое окисление самого ацетилена на практике применимо только при крупномасштабном производстве жидкого кислорода, в процессе которого ацетилен как примесь из атмосферы должен быть удален полностью. Удаление ацетилена совершается путем окисления на специальных долго и безупречно четко работающих катализаторах— Промотированных гопкалитах состава 60%МпОг + 40%СиО с примесью от 1 до 10% окиси серебра (см. [262]). [c.353]

    Описание процесса (рис. 20). Основой процесса является новая конструкция горелки-реактора для получения ацетилена. Ацетилен образуется в результате реакции частичного сгорания. Кислород и природный газ предварительно смешивают и подогревают в специальной печи до более высокой температуры, чем в других известных процессах производства ацетилена. Нагретая смесь подается в реактор оригинальной конструкции. Часть сырья сгорает с кислородом, выделяя тепло, необходимое для крекинга остального количества сырья до ацетилена и водорода. Для сохранения [c.42]

    При пиролизе и дегидрировании метана можно получать ацетилен, сажу и водород. При конверсии метана водяным паром или водяным паром и кислородом получают синтез-газ (СО-Ь -ЬНг) —сырье, используемое для дальнейшего органического синтеза, а также в отдельности чистую окись углерода и водород, которые применяют для процессов гидрирования и синтеза аммиака. Аммиак идет на синтез мочевины, представляющей ценный продукт для производства пластмасс и эффективное удобрение. [c.21]

    В последние годы в промышленности широко применяется получение ацетилена нри неполном горении метана в кислороде. По технико-экономическим показателям этот процесс является одним из наиболее эффективных процессов получения ацетилена из метана. В Советском Союзе он внедряется на ряде заводов на основе переработки природного газа и последующего использования отходящих газов Для производства аммиака и метанола. Образующийся при неполном окислении метана в кислороде ацетилен является термодинамически неустойчивым он легко разлагается на углерод и водород, а также взаимодействует с углекислотой и водяным паром с образованием окиси углерода и водорода. Схема процесса приводится на рис. V. 2. Сырье (природный газ или метан), не содержащее окиси углерода, водорода и высших углеводородов (так как в противном случае оно преждевременно воспламенится), поступает через подогреватель 1, где нагревается до 600° С, в верхнюю часть реактора 3 (в смесительную камеру горелки), куда подается также подогретый до той же температуры кислород в количестве до 65 объемн. % от метана. В результате процесса горения температура в реакторе 3 поднимается до 1500° С продукты реакции охлаждаются до 80° С орошением водой. [c.148]

    Для предупреждения взрыва газов в аппаратуре, в рабочих помещениях и наружных установках производства ацетилена из метана предусматривают сигнализацию о достижении температуры компримируемого. ацетилена-концентрата 90 °С и систему автоматического отключения компрессора при температуре газа 100°С. Вакуум-насосы и вакуум-компрессоры снабжают устройствами постоянного автоматического контроля содержания кислорода. При содержании кислорода в ацетилене 0,2% (об.) сигнализация срабатывает. В помещениях, опасных с точки зрения выделения газа, устанавливают газоанализаторы. Сигнализаторы наличия горючих газов должны настраиваться на концентрацию 20% от нижнего предела взрываемости. [c.33]

    К техническим газам относятся кислород, водород, азот, двуокись углерода и ацетилен. Эта отрасль включает государственные предприятия, находящиеся под управлением частных фирм, но не включает чисто государственных предприятий, поскольку их продукция составляет только I % общего производства [235]. [c.440]

    От места производства сварочных работ, источников открытого огня и сильно нагретых предметов переносные ацетиленовые генераторы, а также баллоны с ацетиленом и кислородом должны устанавливаться на расстоянии не менее 10 м баллоны с кислородом от ацетиленовых генераторов и баллонов — на расстоянии не менее 5 м. [c.92]

    Выбор схемы автоматического регулирования должен производиться на основе учета реальных потребностей и возможностей станции. При этом необходимо иметь в виду, что при производстве ацетилена размещение обычных электрических устройств и приборов внутри взрывоопасных помещений станции является недопустимым. В связи с этим для автоматических устройств наиболее предпочтительны гидравлические, пневматические и механические системы регулирования. В случае пневматических систем необходимо их заполнять газом, инертным по отношению к ацетилену и кислороду, например, азотом или углекислотой. [c.86]

    Этилен и пропилен для производства полимеров и сополиме ров должны быть исключительно чистыми, так как примеси (водород, окись углерода, метан, углеводороды С —С5, кислород, ацетилен и вода) ухудшают свойства полимеров и сополимеров. [c.168]

    В г. Кливленд и его пригородах развито производство основных неорганических и органических продуктов, а также лакокрасочных материалов. В г. Аштабьюла вырабатывают карбид кальция, хлор, каустическую соду, кислород, азот, ацетилен. Заводы по производству неорганических продуктов связаны трубопроводами. Транспортировка по ним азота, кислорода, ацетилена, соляной кислоты обходится на - "35% дешевле, чем автомобильным транопортом [19]. [c.516]

    Для предупреждения взрыва газов в аппаратуре, в рабочих помещениях и наружных установках производства ацетилена из метана предусматривают сигнализацию о достижении температуры компримируемого ацетилена-концентрата 90 °С и систему автоматического отключения компрессора при температуре газа 100°С. Вакуум-насосы и вакуум-компрессоры снабжают устройствами постоянного автоматического контроля содержания кислорода. При содержании кислорода в ацетилене 0,2% (об.) сигнализация срабатывает. В помещениях, [c.33]

    Ацетилен — бесцветный газ. Из-за присутствия в нем примесей он обладает резким специфическим запахом и сладковатым вкусом. Ацетилен применяется в промышленности для газопламенной обработки металлов, а также в качестве сырья для различных химических производств. Ацетилен легче воздуха и кислорода. 1 его при температуре 20° С и давлении 1 ата весит 1,09 кг, 1 воздуха при тех же условиях весит 1,33 кг, а 1 кислорода— 1,41 кг. При температуре 0°С и давлении I ата 1 ацетилена весит 1,179 кг. Плотность его по отношению к воздуху 0,91. При температуре —83,6° С и давлении 1 ата ацетилен переходит в бесцветную, легко подвижную, сла-бопахнущую жидкость. При температуре —85° С он переходит в твердое состояние. Жидкий и твердый ацетилен взрывчаты, [c.21]

    При эксплуатации взрывоопасных производств неоднократно происходили взрывы в результате воспламенения огнеопасных веществ. В ряде случаев взрывы были вызваны проскоком газов, воспламенявшихся в присутствии кислорода. В производстве ацетилена, а также в ряде других производств, в которых присутствует ацетилен, особую опасность представляет образование ацети-ленистой меди, которая на воздухе может взорваться. Поэтому з производствах, связанных с применением газовых фракций, содержащих ацетилен, не допускается применение оборудования и деталей из меди. В процессах, связанных с переработкой ацетилена на. медьсодержащем катализаторе, принимают другие меры, исключающие образование ацетиленидов меди. Например, для предупреждения образования металлической меди и контакта ее с ацетиленом процесс ведут в кислой среде солей меди. [c.337]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Метан и кислород подогревают до 600 С в трубчатых печах 1 и 2, обогреваемых газом, соответственно, и поступают в реактор 3. Из реактора пирогаз с температурой после закалки водой 80°С проходит полый, орошаемый водой, скруббер 4 и мокрый электрофильтр 5, в которых из газа осаждаются сажа и смола. Затем пирогаз охлаждается водой в холодильнике непосредственного смешения 6, промывается в форабсорбере 7 небольшим количеством диметилформамида (ДМФА) и поступает в газгольдер 8. Вода, стекающая из реактора 3, скруббера 4 и электрофильтра 5, содержащая сажу, поступает в отстойник 9, из которого водный слой возвращается в реактор для закалки, а собранная сажа с примесью смолы направляется на сжигание. Газ из газгольдера 8 сжимается в компрессоре 10 до давления 1 МПа и подается в абсорбер 11, где из него ДМФА извлекается ацетилен. Непоглощенный газ, состоящий из водорода, метана и оксидов углерода, поступает в скруббер 12, орошаемый водой, в котором из газа улавливается унесенный газом ДМФА. Оставшийся газ используют как топливо или в качестве синтез-газа. Раствор ацетилена в ДМФА из абсорбера 11 проходит дроссель 13, где давление снижается до 0,15 МПа, и поступает в десорбер 14. Десорбированный из раствора ацетилен промывается в скруббере /5 водой и выводится с установки. Основным аппаратом в производстве ацетилена окислительным пиролизом метана является реактор. [c.256]

    Ацетилен получают из метана методом частичного сожжения последнего в токе кислорода. В этом процессе наряду с ацетиленом образуются окись углерода и водород, являющиеся сырьем для синтеза аммиака, метилового спирта и реакции Релена. Отпускная цена на ацетилен зависит от того, какой именно продукт предполагается получать в основном по этому процессу ацетилен или водород. Во всяком случае, процесс частичного сожжения всегда применяют в сочетании с установками, на которых могут быть использованы для химических синтезов другие получающиеся в результате частичного сожжения газообразные продукты. Этот процесс используют в США, Италии и Германии. Даже в США ацетилен из метана составляет всего лишь 10% общего производства ацетилена в этой стране. При этом в США производство ацетилена из метана методом частичного сожжения дислоцируется только в штатах Техас и Луизиана, где условия для этого исключительно благоприятны. [c.406]

    Кроме указанных областей применения ацетилен широко ис1юльзуется при автогенной сварке металлов, так как горение ацетилена в смеси с кислородом дает температуру выше ЗОООХ. Ацетилен находит широкое применение в качестве исходного сырья для многочисленных синтезов, из которых наиболее важное значение имеют производства синтетического каучука, пластических масс, этилового спирта, уксусной кислоты и др. [c.142]

    K.— серебристо-белый металл, оченьмягкий, легко режется ножом, В соединениях проявляет степень окисления +1. Химически К. очень активен. На воздухе быстро окисляется. Энергично соединяется с галогенами, образуя соответствующие соли. С серой образует сульфид КгЗ. Бурно взаимодействует с водой и кислотами с выделением водорода. К. энергично реагирует со многими органическими соединениями (со спиртами образует алкоголяты на холоде взаимодействует с ацетиленом с образованием КНСг). Металлический К. применяют для получения пероксида калия К2О2, используемого для регенерации кислорода. К. служит катализатором при получении некоторых видов синтетического каучука. Сплав К- с Na используется как охладитель в атомных реакторах и как восстановитель в производстве некоторых металлов (титана). Соли К. (КС1 и др.) применяют как калийные удобрения. См. также Калия соединения. [c.60]

    При разработке средств противоаварийной защиты следует всесторонне анализировать неполадки и аварийные ситуации, происходивщие при эксплуатации данного или подобного процесса. Например, при эксплуатации процессов в производстве ацетилена термоокислительным пиролизом метана были выявлены характерные аварии. Установлено, что многие из них связаны с повышением содержания кислорода в газах пиролиза с последующим их взрывом в аппаратуре, загоранием ацетилена в трубопроводах в момент сброса взрывоопасных газов на факел, подсосом воздуха в аппаратуру с ацетиленом, загоранием полимеров при их выгрузке и транспортировании из испарителей. [c.114]

    При газовой сварке должны применяться сварочная проволока по ГОСТ 2246—70 марки СВ-08А, СВ-08ГА с диаметрами 0,3 0,5 0,8 1 1,2 1,4 1,6 2 2,5 3 4 5 6 8 10 12 мм кислород технический по ГОСТ 5583—78 ацетилен в баллонах по ГОСТ 5457—75 или ацетилен, получаемый на месте производства из карбида кальция по ГОСТ 1460—81. [c.123]

    Учитывая большой диапазон концентрационных пределов воспламенения смесей ацетилена с воздухом и кислородом, а также его особую склонность к детонации и взрывчатому термическому разложению в отсутствие окислителей, трубопроводы ацетилен-содержащих газов факельных систем целесообразно предусматривать максимально короткими. При значительной протяженности ацетиленопроводы необходимо оснащать огнепреградителями или другими средствами локализации распространения пламенп и взрыва. Трубопроводы сбросных газов, как правило, следует распо- пагать с уклоном не менее 0,002 по ходу газа или 0,003 против хода газа. Для трубопроводов сбросных газов факельной установки в пределах производства, цеха или технологической установки рекомендуется уклон в сторону факельного ствола. При размещении факельной установки на аппаратах или перекрытиях зданий трубопровод сбросных газов может иметь уклон в сторону технологического оборудования. [c.215]

chem21.info

Ацетилен в жидком кислороде - Справочник химика 21

    В смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен — жидкий кислород [94]. [c.155]

    Ацетилен, попадая в воздухоразделительные установки в количестве, превышаюш,ем его пределы растворимости в жидком кислороде или азоте, выпадает в твердом виде, осаждается на трубках конденсатора. Замороженный твердый ацетилен представляет большую опасность. При нагревании он может полимеризоваться или переходить в неустойчивое взрывчатое комплексное соединение. Большинство аварий, связанных со взрывами ацетилена, происходило во время отогрева или повторного запуска ВРУ. Максимальная растворимость ацетилена в жидком О2 составляет-2,28 см /л ири температуре сжижения кислорода. В соответствии с [c.370]

    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    Гордеев и Матвеев исследовали [215] инициирование взрыва кавитацией (нри 1 атм) следующих ЖВВ нитроглицерин (НГЦ), тетранитрометан (ТНМ), нитрометан (НМ), растворы бензола, гептана, метанола в ТНМ, раствор метана в жидком кислороде при температуре кипения азота) и гетерогенная система твердый ацетилен — жидкий кислород (так же при температуре кипения азота). Была разработана оригинальная методика создания крупных кавитационных полостей, позволившая впервые подробно изучить явления. Использовалась пробирка с хорошо пригнанным поршнем, под который вводили исследуемое вещество. Жидкостной затвор в виде конической воронки, заполненной тем же 13В, позволял изолировать жидкость под поршнем от воздействия атмосферного давления в течение нескольких миллисекунд. Быстрое выдергивание поршня создает растягивающее напряжение в жидкости, сплошность ВВ нарушается и образуются каверны Взрыв возбуждался при захлопывании кавитационных пузырьков в растворах бензола или гептана в тетранитрометане. В техническом НГЦ взрывы удалось возбуждать путем применения поршня с заостренным концом. [c.267]

    Осушка и очистка воздуха цеолитами имеется не на всех установках, и опыт их эксплуатации еще мал. Адсорбция взрывоопасных примесей в регенераторах еще достаточно не используется в промышленной практике. Поэтому при эксплуатации большинства установок приходится учитывать тот факт, что практически весь ацетилен, содержащийся в воздухе (особенно при повышенных его концентрациях), поступает (или может поступать) с ним в ректификационную колонну. Чтобы установить, как распределяется поступающий с воздухом ацетилен в кислородном аппарате и какие опасности с этим связаны, необходимо знать свойства системы ацетилен — жидкий воздух и ацетилен — жидкий кислород. [c.374]

    Ацетилен переходит в твердое состояние при температуре —83,6 С, поэтому, попадая вместе с воздухом в кислородный аппарат, где температура значительно ниже, он затвердевает. Ацетилен способен растворяться в жидкой азото-кислородной смеси, жидком кислороде и в жидком азоте. В 1 дм " жидкого кислорода растворяется около 5 сж ацетилена (в пересчете иа газ), что соответствует пределу насыщения раствора ацетилен— жидкий кислород. [c.703]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен— жидкий кислород с содержанием 5—6% ацетилена по массе. Прн вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает 1,5—2 мм, величина начального давления, необходимого для создания импульса и возникновения взрыва, значительно уменьшается. Для того чтобы в воздухоразделительных аппаратах не накапливалось большое количество ацетилена, необходимо устранять источники загрязнения воздуха ацетиленом, строго соблюдать установленный режим работы и регулярно производить анализ жидкого кислорода из конденсатора и кубовой жидкости на содержание ацетилена.  [c.705]

    Известно несколько способов защиты воздухоразделительных аппаратов от накопления в них ацетилена. В отечественной практике и за рубежом наиболее распространен способ адсорбционного поглощения ацетилена силикагелем из растворов ацетилен— жидкий воздух и ацетилен—жидкий кислород (авторы И. П. Ишкин и П. 3. Бурбо). Рассмотрим эти способы. [c.705]

    В смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен — жидкий кислород. Эта смесь взрывается при наименьшей величине начального импульса (механического удара, ударной газовой волны). Установлено также, что при содержании ацетилена в жидком кислороде ниже предела его растворимости в кислороде система не взрывоопасна. Взрыв может происходить при насыщении жидкого кислорода ацетиленом выше предела растворимости, при выделении ацетилена в виде суспензии или при высаживании его на стенках сосуда в твердом виде. [c.695]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен — жидкий кислород, содержащей 5—6 вес. % ацетилена. При вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает 1,5—2 мм, величина начального давления, необходимого для создания импульса и возникновения взрыва, значительно уменьшается. [c.697]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен— жидкий кислород с содержанием 5—6% ацетилена по массе. При вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает [c.705]

    Отключение выносных конденсаторов для отогрева допускается только при отсутствии ацетилена в основных конденсаторах в течение 3 суток перед отогревом. При отключении выносного конденсатора анализы на ацетилен жидкого кислорода из основного конденсатора должны производиться через [c.299]

    Ацетилен Жидкий кислород 0,2 [c.52]

    Твердый ацетилен растворяется в жидком кислороде. В 1 л жидкого кислорода может раствориться около 5 сж ацетилена, что соответствует пределу насыщения раствора ацетилен—жидкий кислород. [c.198]

    Известен случай, когда на одном предприятии вследствие крайней нерегулярности слива жидкого кислорода из отделителя и повышенной загрязненности перерабатываемого воздуха в слитом жидком кислороде были визуально обнаружены плавающие капли другой жидкости. Анализом было установлено, что эти капли состояли в основном из этилена и пропилена. В состаЕ капель также входили ацетилен, бутилен и другие углеводороды. Опасность такой гетерогенной системы подтверждается тем, что на этом же предприятии ранее произошел взрыв в ведре с жидким кислородом, слитым из отделителя. [c.20]

    В то же время в колоннах для получения криптонового концентрата, очевидно, может накопиться сравнительно большое количество озона. Имеются сведения о том, что на одном из металлургических комбинатов при определении содержания ацетилена в жидкости, сливаемой из конденсатора колонны для получения криптонового концентрата, обнаружили озон в количестве до 3— 4 см /л жидкости. В этих условиях часто наблюдается растрескивание резиновых шлангов, которые используют при проведении анализов жидкого кислорода на ацетилен. Характер разрушений шлангов указывает на типичное растрескивание резины в присутствии озона. [c.26]

    Совместные кристаллы окиси азота и ацетилена, содержащие более 25% (мол.) ацетилена, обладали в жидком кислороде той же чувствительностью к воспламенению, что и ацетилен [6]. [c.27]

    Анализ жидкого кислорода на содержание в нем наряду с ацетиленом и других углеводородов начали проводить только в последние годы. [c.36]

    Важным выводом из рассматриваемой работы является также то, что взрывы легко инициировались в смесях жидкого кислорода с этиленом, ацетиленом и другими углеводородами при содержании их, меньшем, чем составы нижних пределов воспламеняемости в газовой фазе, но при условии, если был превышен предел их растворимости в жидком кислороде. Авторами была проде- [c.46]

    Чувствительность смесей жидкого кислорода с ацетиленом к импульсу давления от создания во взрывном сосуде небольших избыточных давлений [0,07—0,09 [c.55]

    Были также проведены опыты по изучению взрываемости в среде жидкого кислорода адсорбентов, содержащих одновременно адсорбированные продукты рас-ложения масла и ацетилен. Для испытаний использовали адсорбенты с адсорбированными продуктами распада масла, с которыми проводили опыты, описанные выще. Перед насыщением ацетиленом адсорбенты сушили в течение 8 ч с перемешиванием слоя при 120° С для силикагеля и при 240—260° С для активного глинозема. Такая несколько пониженная температура сушки была вызвана необходимостью предотвратить выгорание масла. Насыщение образцов ацетиленом при комнатной температуре проводили по описанной выше методике. [c.63]

    Данные испытаний подтвердили, что активный глинозем и силикагель испытанных марок с адсорбированными совместно продуктами разложения масла и ацетиленом в условиях проведенных испытаний в среде жидкого кислорода не взрываются от удара, искры и детонатора. [c.63]

    Таким образом, в настоящее время можно считать экспериментально доказанным, что твердый ацетилен практически растворяется в жидком кислороде и азоте, хотя и в относительно небольших количествах. [c.89]

    После оснащения воздухоразделительных установок адсорберами на потоке кубовой жидкости содержание ацетилена в жидком кислороде на больщинстве установок значительно уменьшилось и составляет обычно менее 0,01 от его растворимости в жидком кислороде. Однако в настоящее время высказываются предположения об опасности сильно разведенных растворов ацетилена в жидком кислороде, так как при кипении такого раствора кристаллы ацетилена могут постепенно откладываться на горячих поверхностях трубок конденсатора, имеющих более высокую температуру, чем жидкий кислород, а также в тех местах, куда жидкий кислород поступает только периодически, и имеется возможность его полного испарения. Образовавшиеся кристаллы время от времени будут покрываться тонким слоем жидкого кислорода, а наблюдениями установлено, что именно в этом состоянии ацетилен имеет наибольшую чувствительность к импульсу давления. [c.100]

    Ацетилен не является единственной взрывоопасной примесью воздуха. Как было показано в гл. II, взрывоопасными являются смеси жидкого кислорода с другими углеводородами и сероуглеродом. [c.101]

    В жидком кислороде ацетилен должен отсутствовать. При юявлении следов ацетилена в жидкости конденсатора, не превы-дающих 0,4 см /л, адсорбер следует переключить. Если содержа- иe ацетилена превышает эту величину, то воздухоразделительный аппарат нужно перевести на отогревание. В крупных установках технического кислорода на потоке воздуха из турбодетандера в олонну высокого давления устанавливают газовые адсорберы, юглощающие ацетилен и другие углеводороды из газообразного юздуха при низких температурах. [c.125]

    До указанных работ и после них некоторые авторы высказывали сомнение в растворимости твердого ацетилена в жидком кислороде и жидком азоте. Однако зарубежные работы последних лет подтвердили полученные ранее советскими исследователями результаты [38, 39]. Такого же порядка величины получены во ВНИИкимаше Г. Ф. Денисенко в 1957—1960 гг. при исследовании системы твердый ацетилен — жидкий кислород и азот. [c.87]

    Проведенные опыты в СССР (3. П. Басыров) и за рубежом (Карват) показали, что в смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен—жидкий кислород эта смесь взрывается при наименьшей величине начального импульса (механического удара, ударной газовой волны). Установлено также, что при содержании ацетилена в жидком кислороде ниже предела его растворимости в кислороде система не взрывоопасна. Взрыв может происходить при насыщении жидкого кислорода ацетиленом выше предела растворимости, при выделении ацетилена в виде суспензии или при высаживании его на стенках сосуда в твердом виде. Такие углеводороды, как метан, этан, этилен, достаточно хорошо растворяются в жидком кислороде и воздухе и поэтому не накапливаются в аппаратах в твердом виде. Растворимость метана, например, в 300 раз больше, чем ацетилена меньшей растворимостью, чем указанные выше углеводороды, обладают пропан, пропилен, бутан и бутилен поэтому они представляют большую опасность в случае высокого содержания их в перерабатываемом воздухе. Наиболее опасен пропилен по способности к взрыву он находится на втором месте после ацетилена. [c.703]

    Как показали исследования система ацетилен—жидкий кислород становится наиболее чувствительной к удару в момент, когда при испарении жидкого кислорода кристаллы твердого ацетилена начинают выступать из жидкости и соприкасаться с газообразным кислородом. В этом случае энергия поджигания ацетилено-кисло-родной смеси в 5-10 раз мёньше, чем твердого ацетилена. Взры- [c.695]

    Ацетилен пе ходит в твердое состояние уже при температуре —83,6°Ц. Поэтому, попадая кислородный аппарат вместе с воздухом, где температура будет значительно ниже, чем температура затвердевания ацетилена, он будет переходить в твердое состояние и накапливаться в аппарате. Как показали опыты Ишкина И. П. и Бурбо Л. 3., твердый ацетилен растворяется в жидком кислороде. По данным этих опытов о 1 л жидкого кислорода может раствориться около 5 см ацетилена, что соответствует пределу насыщения раствора ацетилен — жидкий кислород. Избыток ацетилена сверх этого предела насыщения будет выделяться в твердом виде и находиться жидком кислороде во взвешенном состоянии в виде белых хлопьев. [c.207]

    Предполагают, что ацетилен и закись азота попали в конденсатор в результате частичной регенерации силикагелевого фильтра во время отключения установки без полного размораживания за шесть месяцев до взрыва. Оставалось неясным, почему в течение шести месяцев не взорвалась взрывчатая смесь в конденсаторе, если она в него попала. Исследования показали, что твердый ацетилен очень медленно растворяется в жидком кислороде. Растворимость же закиси азота приблизительно в 27 раз больше растворимости ацетилена. Твердое вещество, отложившееся виачале, преимущественно содержало закись азота [90% (мол.)], а поэтому было невзрывоопасным. Как показали расчеты и подтвердили эксперименты, через шесть месяцев твердый слой ацетилена толщиной 1 мм растворился, что и привело к образованию взрывчатой смеси. [c.372]

    Эти предположения полностью согласуются с опытными данными, полученными во ВНИИкимаше Г. Ф. Денисенко. В опытах, моделирующих условия в конденсаторе, было показано, что при кипении насыщенного и разведенного раствора ацетилена в жидком кислороде ацетилен выпадает в твердом виде, причем на трубке, подогреваемой на 5—7 град, образуется тонкий слой твердого ацетилена. Основное количество твердого ацетилена образовывалось в щели, моделирующей каналы, возникающие между трубкой конденсатора и трубной доской [c.100]

    В бывшем Институте азота (ГИАП) опыты Поллит-цера были повторены в 1937—1938 гг. в стеклянных сосудах, но при этом ни разу не удалось взорвать смесь жидкого кислорода с твердым ацетиленом. Смесь взрывалась только при добавлении 1 г озона на 1 дм кислорода [17]. [c.45]

    Другие авторы также проводили качественные испытания смеси жидкого кислорода с твердым ацетиленом на взрываемость и отметили высокую ее бризаитность. [c.45]

    При внедрении адсорберов ацетилена в промышленные установки в СССР и за границей были проведены опыты по изучению взрываемости силикагеля, насы-шенного ацетиленом в динамических условиях, в среде кубовой жидкости, а также силикагеля, насыщенного ацетиленом в статических условиях, в среде жидкого воздуха. Результаты опытов показали, что ацетилен, адсорбированный на силикагеле, в обогащенном жидком воздухе и в жидком кислороде не взрывается. Однако при эксплуатации воздухоразделительных установок имело место несколько взрывов в адсорберах. В связи с этим под руководством И. П. Ишкина была еще раз проверена взрываемость системы адсорбированный ацетилен — адсорбент — жидкий кислород, а также системы адсорбированные продукты разложения масла — адсорбент — жидкий кислород, данные по взрываемости которых отсутствовали. [c.61]

    Из всех примесей воздуха наиболее опасным для воздухоразделительных установок считают ацетилен, так как он химически неустойчив и активен, что объясняется наличием тройной углеродной связи. Как было показано в главе II, ацетилен в смеси с жидким кислородом является наиболее чувствительным к импульсу удара из всех исследованных углеводородов. Рядом исследователей было показано, что система жидкий кислород — твердый ацетилен становится наиболее чувствительной в тех случаях, когда кристаллы ацетилена при испарении жидкого кислорода начинают оголяться и сообщаются с газообразным кислородом. Известно, что твердый ацетилен может взрываться и при отсутствии кислорода, но для этого необходим очень мощный импульс. Так, по литературным данным [45], энергия зажигания твердого ацетилена составляет при давлении 0,14 Мн мР-(1,4 кГ см ) более 11 дж, а энергия зажигания газооб-зазного чистого ацетилена при том же давлении 10 дж. 3 то же время энергия зажигания ацетилено-кислород-ных смесей при давлении 0,1 Мн1м (1 кГ смР ) составляет всего 0,019 мдж, или в 5X10 раз меньше, чем энергия, необходимая для зажигания твердого ацетилена. [c.99]

chem21.info