Как работает стабилизатор напряжения — основные параметры и функции. Стабилизатор инверторный принцип работы


что это такое, его устройство, принцип работы

Стабилизатор напряжения — устройство, защищающее электрозависимый котёл отопления от скачков в сети.

Поскольку котёл — сложное и дорогое оборудование, неполадки в сети способны нарушить его работу и полностью вывести из строя плату управления, ремонт которой обойдётся в 20–30% от стоимости самого устройства.

Стабилизатор помогает избежать таких трат за счёт своей основной функции: поддержания постоянного уровня напряжения в сети.

Facebook

Twitter

Google+

Vkontakte

Odnoklassniki

Инверторные стабилизаторы напряжения для газовых котлов

Инверторные стабилизаторы напряжения имеют свои особенности.

Устройство

Верное название этого вида устройств: стабилизаторы двойного преобразования. Первое преобразование — переменный ток в постоянный.

Второе: постоянный в переменный — из-за чего и возникло ещё одно наименование: инверторный стабилизатор.

На первом этапе трансформации нестабильный ток из сети поступает в выпрямитель и мощностной корректор устройства, где фильтруется и стабилизируется, после чего скапливается на пластинах большого числа конденсаторов.

Для стабильной и долгой работы котла нужен переменный ток с точной синусоидальной характеристикой — чем равномернее перепады от минимума к максимуму тока, тем лучше для дорогостоящего электрооснащения котла.

Идеальную синусоиду этот тип стабилизаторов даёт за счёт использования инвертора.

Заряд с конденсаторов (уже в виде постоянного тока) после первого этапа преобразования переходит сюда, где снова трансформируется — обратно в переменный ток с постоянной частотой 50 Гц и напряжением 220 В.

Такая точность обеспечивается благодаря использованию кварцевого генератора. После двух этапов стабильный переменный ток с чёткими синусоидальными перепад

ogon.guru

Как работает стабилизатор напряжения - принцип действия

Стабилизатором напряжения называется устройство, к которому подключается напряжение на его вход, с неустойчивыми и нестабильными свойствами для нормальной работы потребителей. На выходе прибора напряжение имеет необходимые качества и свойства, способствующие нормальному функционированию нагрузки потребителей.

Стабилизаторы постоянного тока

Питание сети постоянного тока требует выравнивания при входном напряжении ниже или выше допустимого предела. При протекании тока по стабилизатору, оно выравнивается до необходимой величины. Также схему стабилизатора можно выполнить со сменой полярности питания.

Линейные

Такой прибор является делителем, на который поступает нестабильное напряжение, а на его выходе напряжение выравнивается и имеет необходимые свойства. Его принцип действия состоит в постоянном изменении значения сопротивления для создания выровненного питания на выходе.

Как работает стабилизатор напряжения

Достоинства:

  • При эксплуатации отсутствуют помехи.
  • Простое устройство с малым числом деталей.

Недостатки:

  • При значительной разнице выходящего и входящего питания линейный стабилизатор показывает малый КПД, так как значительная часть производимой мощности переходит в тепло и расходится на сопротивлении.

Параметрический

Такое исполнение прибора с контрольным элементом, подключенным параллельно нагрузке, выполнено на полупроводниковых и газоразрядных стабилитронах.

Как работает стабилизатор напряжения

По стабилитрону проходит ток, который выше в десять раз тока на резисторе. Поэтому такая схема подходит для стабилизации питания только в маломощных устройствах. Чаще всего его применяют в качестве составного компонента преобразователей тока со сложной конструкцией.

Последовательный

Работа прибора видна на изображенной схеме.

Как работает стабилизатор напряжения

Эта схема соединяет два компонента:

  1. Биполярный транзистор, повышающий ток. Он является эмиттерным повторителем.
  2. Параметрический стабилизатор, рассмотренный выше.

Выходное напряжение не зависит от проходящего по стабилитрону тока. Однако оно зависит от вида вещества полупроводника. По причине сравнительной независимости этих величин выходное напряжение получается устойчивым.

При протекании по транзистору напряжение на выходе прибора повышается. При применении одного транзистора напряжение может не удовлетворить потребителя. В этом случае выполняют прибор из нескольких транзисторов, чтобы повысить ток до необходимой величины.

Компенсационный последовательный

Компенсационный последовательный стабилизатор имеет обратную связь. В нем выходное напряжение сравнивается с эталоном. Разница между ними нужна для создания сигнала устройству, контролирующему напряжение.

Как работает стабилизатор напряжения

С сопротивления снимается некоторое количество выходного напряжения, сравнивающееся с основным значением стабилитрона. Эта разница поступает на усилитель и подается на транзистор.

Устойчивое функционирование создается при сдвиге фаз. Так как часть напряжения на выходе поступает на усилитель, то оно сдвигает фазу на угол 180 градусов. Транзистор, подключенный по типу усилителя, фазы не сдвигает, и петлевой сдвиг равен 180 градусов.

Импульсные

Электрический ток, обладающий неустойчивыми свойствами, с помощью коротких импульсов поступает на устройство накопления стабилизатора, которым является конденсатор или катушка.

Как работает стабилизатор напряжения

Накопленная энергия далее выходит на потребитель с другими свойствами. Есть два способа стабилизации:

  1. Управление длиной импульсов.
  2. Сравнение выходного напряжения с наименьшим значением.

Импульсный стабилизатор может изменять напряжение с разными результатами. Их делят на виды:

  • Инвертирующий.
  • Повышающе-понижающий.
  • Повышающий.
  • Понижающий.

Достоинства:

  • Малая потеря энергии.

Недостатки:

  • Помехи в виде импульсов на выходе.

Стабилизаторы переменного напряжения

Такие приборы предназначены для выравнивания переменного напряжения независимо от его параметров входа. Выходное напряжение должно быть в виде идеальной синусоиды, независимо от входных дефектов питания. Различают несколько видов стабилизаторов

Накопители

Это стабилизаторы, накапливающие энергию от входного источника, а далее энергия создается снова, однако уже с постоянными параметрами.

Двигатель-генератор

Принцип работы стабилизатора напряжения такого типа состоит в изменении электроэнергии в кинетический вид, применяя электродвигатель. Далее генератор снова производит обратное изменение, уже с постоянными параметрами.

Основным компонентом системы является маховик, накапливающий энергию и выравнивающий напряжение. Он соединен с подвижными элементами генератора и двигателя, имеет большую массу, инерцию, которая сохраняет быстродействие. Так как скорость маховика постоянная, то напряжение также будет постоянным, даже при малых перепадах напряжения на входе.

Феррорезонансный

Прибор состоит:

  • Конденсатор.
  • Катушка с ненасыщенным сердечником.
  • Катушка индуктивности с насыщенным сердечником.

К катушке с сердечником насыщенным приложено постоянное напряжение, и не зависит от тока, поэтому можно подобрать данные второй катушки и емкости для стабилизации питания в необходимых пределах.

Работа такого устройства сравнивается с качелями. Их трудно сразу остановить, или сделать скорость качания выше. Качели также не нужно постоянно подталкивать, так как инерция делает свое дело. Поэтому могут быть значительные падения и обрыв питания.

Как работает стабилизатор напряжения

Инверторный

Схема такого прибора состоит:

  • Преобразователь напряжения.
  • Микроконтроллер.
  • Емкость.
  • Выпрямитель с регулятором мощности.
  • Фильтры входа.
Как работает стабилизатор напряженияКак работает стабилизатор напряжения

Принцип работы инверторного стабилизатора заключается в протекании 2-х процессов:

  1. Вначале входное переменное напряжение изменяется в постоянное при прохождении по выпрямителю и корректору. При этом электроэнергия накапливается в емкостях.
  2. Далее постоянное напряжение изменяется в переменное на выходе. Из емкости ток течет к инвертору, трансформирующему ток в переменный с постоянными данными.

Корректирующие

  • Электромагнитный, который имеет отличие от феррорезонансного отсутствием емкости, и пониженной мощностью.
  • Электромеханический и электродинамический.
  • Релейный.

ostabilizatore.ru

Трехфазный стабилизатор напряжения: схемы подключения, выбор

Качество электроэнергии это не абстрактное понятие, а набор определенных показателей, регулируемых нормами ГОСТа 32144-2013. Соответственно, производители электрооборудования, для обеспечения функциональности своей продукции, также должны ориентироваться на нормированные характеристики питающих сетей. Но что делать в случаях перепадов или скачков напряжения в электрической сети, проявление которых не поддается прогнозированию? Самый оптимальный вариант решения задачи – установить трехфазный стабилизатор напряжения.

Устройство и принцип работы

Практикуется два варианта исполнения трехфазных стабилизаторов:

  1. Единая конструкция, включающая в себя три контура стабилизации, независимых друг от друга.
  2. Три однофазных стабилизатора (одного типа), подключенных «звездой» и размещенных в одной стойке.
Исполнение 3-х фазных стабилизаторов: единая (1) и модульная (2) конструкцииИсполнение 3-х фазных стабилизаторов: единая (1) и модульная (2) конструкции

Единые конструкции, как правило, применяются для стабилизации питания маломощных потребителей. В этом случае моноблочная конструкция обойдется дешевле модульных стабилизаторов, не если выйдет из строя один из контуров нормализации напряжения, в ремонт придется сдавать всю установку.

Основное преимущество модульной конструкции заключается в том, что при неисправности одного из блоков стабилизации функция «байпас» включает подачу питание напрямую, минуя проблемный модуль. Это позволяет не прерывать подачу электроэнергии, пока производится ремонт и не требует доставки в мастерскую всей конструкции.

Что касается принципа работы трехфазных стабилизаторов, то он такой же, как у однофазных приборов, которые мы уже рассматривали, в одной из предыдущих публикаций.

Типы трехфазных стабилизаторов напряжения

Классификация приборов, обеспечивающих нормализацию качества электроэнергии, производится в зависимости от их принципа действия и способа управления. На текущий момент применяются следующие виды стабилизаторов:

  • Электронные (тиристорные), устройства данной группы управляются автоматически, то есть отсутствует необходимость настройки пользователем. Широко применяются для защиты бытовых электрических приборов от перекоса фаз, скачков напряжения и т.д.
  • Сервоприводные (электромеханические), трехфазные модели выпускаются под рабочее напряжение 0,4-11,0 кВ, как правило, предназначены для промышленного использования.
  • Релейные, в настоящее время данный вид стабилизаторов вытесняется более современными моделями с электронными ключами.
  • Феррорезонансные.
  • Инверторные.

Кратко опишем особенности перечисленных выше видов.

Релейные

В основу работы приборов данной группы заложен дискретный принцип нормализации электроэнергии. Для этого осуществляется переключение между обмотками блоков трансформаторов, чтобы повысить или понизить уровень выходных напряжений, с целью максимального приближения к номинальным параметрам. Коммутация обмоток осуществляется при помощи силовых реле, за работу которых отвечает электронный блок управления.

Ниже представлено фото релейного однофазного модуля с обозначением основных элементов.

Основные элементы релейного стабилизатораОсновные элементы релейного стабилизатора

Обозначения:

  • А – Электронный блок контроля работы.
  • В – Блок коммутации.
  • С – Стабилизирующий трансформатор.

Тиристорные

В качестве базовой основы данного вида стабилизаторов используется тот же принцип что и у релейных модификаций. Единственное отличие заключается в блоке коммутации, где вместо силовых реле используются электронные ключи – тиристоры или симисторы (сдвоенные тиристоры), что отразилось в названии приборов этого типа.

Устройство стабилизатора Vektor Energy на электронных ключахУстройство стабилизатора Vektor Energy на электронных ключах

Обозначения:

  • А – Автотрансформатор.
  • В – Электронные ключи (в данной модели используются симисторы).
  • С – Блок управления.

Иногда тиристорные стабилизаторы называют электронными, что тоже считается правильным, поскольку тиристоры, по сути, являются электронными ключами.

Электромеханические

Основным элементом данной конструкции является автотрансформатор, снабженный подвижным токосъемником. За счет перемещения последнего производится плавное управление коэффициентом трансформации, что позволяет корректировать линейное напряжение в однофазных и трехфазных сетях, обеспечивая высокую точность стабилизации.

В ранних моделях данного вида управление выходным напряжением осуществлялась вручную. Сегодня этот процесс полностью автоматизирован, перемещение токосъемника по обмотке автотрансформатора обеспечивает сервопривод, управляемый электронным контролером. Ниже представлено изображение трехфазного стабилизатора электромеханического типа и основные элементы одного из его модулей.

Особенности конструкции релейного стабилизатораОсобенности конструкции релейного стабилизатора

Обозначения:

  • А – Сервопривод, перемещающий токосъемник.
  • В – Плата управления.
  • С – Токосъемный механизм.
  • D – Автотрансформатор.

Феррорезонансные

Данный вид можно без преувеличения назвать прародителем бытовых нормализаторов напряжения. В нашей стране их широкое применение началось в середине 50-х годов прошлого века, когда ламповые телевизоры и другая бытовая техника стали доступны широким слоям населения.

В основу работы этого прибора заложен феррорезонансный эффект, в ходе которого устанавливается электромагнитное взаимодействие двух дросселей с насыщаемым и не насыщаемым сердечниками. Основные элементы такой конструкции представлены ниже.

Основные элементы феррорезонансного стабилизатораОсновные элементы феррорезонансного стабилизатора

Обозначения:

  • A – Трансформатор.
  • В – Дроссель с насыщаемым сердечником (выходной).
  • С – Дроссель с не насыщаемым сердечником (входной).
  • D – Сглаживающий конденсатор.

Инверторные

Это наиболее современная разработка нормализаторов питания. Принцип работы таких устройств коренным образом отличается от более ранних модификаций. В основу положено двойное преобразование. То есть, на первом этапе входной переменный ток преобразуется в постоянный. На втором этапе производится обратное инвертирование в синусоидальное напряжение с максимальным приближением к номинальным параметрам электрической сети.

Блок схема и устройство инверторного стабилизатораБлок схема и устройство инверторного стабилизатора

Обозначения:

  • А – Входной фильтр.
  • B – Блок преобразования и коррекции сетевого напряжения.
  • С – Управляющий блок и входящие в него исполнительные элементы.
  • D – Контролер управления электронными ключами.
  • Е – Сглаживающий емкостной фильтр.
  • F – Инверторный преобразователь.

Гибридные приборы

Гибридные типы устройств комбинируют в себе свойства двух стабилизаторов, например, электромеханического и тиристорного. При небольших скачках напряжения нормализация осуществляется при помощи электромеханической составляющей, когда уровень превышает рабочий диапазон, электронные ключи осуществляют перекоммутацию обмоток трансформатора. Благодаря такой комбинации гибридные стабилизаторы позволяют использовать преимущества того или иного способа нормализации напряжения, правда, следует учитывать, что недостатки тоже суммируются.

Преимущества и недостатки

Предлагаем ознакомиться с плюсами и минусами различных типов нормализаторов напряжения, перечисленных выше. Начнем с релейного типа:

  1. Преимущества, к таковым следует отнести: относительно невысокую стоимость и быстродействие (в пределах 20,0 – 40,0 мс).
  2. Недостатки:
  • Не подходит для промышленного применения из-за недостаточной выходной мощности.
  • Большая дискретность и погрешность, последняя может быть на уровне 7,5%.
  • Небольшой уровень перегрузочной устойчивости (около 120%-160%).
  • Применение механических контактов существенно сокращает срок эксплуатации (как правило, не более 5-ти лет).

Теперь рассмотрим особенности моделей, в которых применяются электронные ключи:

  1. Плюсы:
  • Достаточно высокое быстродействие (около 20-ти мс).
  • Большой рабочий ресурс (порядка 10-и – 20-и лет).
  1. Основные минусы: высокая дискретность и низкая устойчивость к перегрузке.

У электромеханических приборов также имеются свои сильные и слабые стороны, к первым можно отнести:

  • Плавное изменение уровня напряжения.
  • Высокая скорость быстродействия и низкая погрешность стабилизации.
  • Перегрузочная устойчивость может составлять 500%-1000%.
  • Широкий диапазон рабочей температуры (от -25°С до 55°С ) и большой эксплуатационный ресурс (30 лет и более).

Что касается недостатков, то у электромеханических моделей их всего два: значительный вес и высокая стоимость.

У феррорезонансных стабилизаторов напряжения самый продолжительный срок эксплуатации (до 50-и лет), небольшой уровень погрешности (порядка 1%) и вполне приемлемая перегрузочная устойчивость (до 300%). Но данному виду присущи специфические недостатки, а именно характерный гул при работе, большой вес и габариты, а также сравнительно высокая стоимость.

Инверторные модели обладают более широким диапазоном входных напряжений, чем у других модификаций нормализаторов. Помимо этого они обеспечивают высокую точность выходного напряжения (погрешность составляет не более 1%) и его плавное регулирование. Инверторные приборы обладают небольшим весом, малыми габаритами и значительным рабочим ресурсом (до 25-и лет эксплуатации). К сожалению, относительно небольшой запас выходной мощности не позволяет использовать такие модели на промышленных предприятиях и объектах.

Что касается гибридных моделей, то их достоинства и недостатки определяются составляющими.

Схемы подключения

Подключение стабилизаторов на 3 фазы осуществляется в соответствии с прилагающийся инструкцией, пример типовой схемы показан ниже.

Типовое подключение 3-х фазного стабилизатораТиповое подключение 3-х фазного стабилизатора

При подключении 3 однофазных блоков для нормализации сети 380 В, или более высокого напряжения, питающего промышленное оборудование, может быть задействована схема подключения, представленная ниже.

Подключение 3-х однофазных блоков стабилизацииПодключение 3-х однофазных блоков стабилизации

Обратим внимание, что обеспечить надежную защиту техники, запитанной от 3-х фазной сети, стабилизируемой от трех отдельных однофазных устройств, необходимо использовать блок синхронизации. Пример такого подключения показан ниже.

Подключение 3-х модулей с применением блока синхронизацииПодключение 3-х модулей с применением блока синхронизации

Обозначения:

  • А – Электросчетчик.
  • В – Блок синхронизации.
  • С – Распределительный шкаф, для подключения нагрузки.
  • D, Е, F – Однофазные модули нормализации напряжения.

Как выбрать – основные критерии

Перечисли факторы, требующие особого внимания при выборе стабилизатора:

  1. Тип электросети, в зависимости от этого используют однофазные или трехфазные нормализаторы.
  2. Качество электроэнергии. То есть, в насколько широком диапазоне происходят колебания напряжения. Соответственно, выбирается модель с соответствующими показателями.
  3. Суммарная мощность нагрузки должна соответствовать номинальной мощности нормализатора. Например, если общая нагрузка 3 кВт, то прибор должен быть рассчитан на мощность 3 и более киловатт. Для повышенной надежности защиты электроприборов рекомендуется иметь запас по мощности.
  4. С какой скоростью прибор регулирует напряжение, если этот параметр критичен, следует отдать предпочтение релейным, тиристорным или инверторным моделям.
  5. Точность параметров выходного напряжения (величина погрешности), при повышенных требованиях рекомендуется использовать высокоточные трехфазные феррорезонансные или инверторные нормализаторы. Они обеспечивают высочайший уровень точности.

Рекомендуем с осторожностью относиться к изделиям неизвестных китайских брендов, низкая цена – единственное их достоинство. При этом, в большинстве своем, они не могут обеспечить стабильное напряжение при приближении к номинальной нагрузке.

Будет полезно прочитать:

www.asutpp.ru

Инверторные электронные автоматические стабилизаторы напряжения, принцип работы, преимущества перед сетевыми фильтрами

                              

ЭЛЕКТРОННЫЙ - ИНВЕРТОРНЫЙ

С явлениями нестабильности электроснабжения, выражающимися в перерывах питания и отклонениях показателей качества электроэнергии от нормальных величин, сталкивался каждый из нас.

Автоматический стабилизатор напряжения

Одним из способов защиты от этих факторов – применение местных стабилизирующих устройств. В этой статье мы попытаемся разобраться, для чего нужен стабилизатор напряжения, что это такое , виды и типы стабилизаторов.

Нормализация параметров электроснабжения – обязательное условие для промышленного электронного оборудования, чувствительного к изменению параметров электропитания.

В цепях бытовых электропотребителей, стабилизация показателей качества электроэнергии обеспечивает защиту электроприборов, установленных в доме или квартире, ламп освещения, котлов отопления продлевая срок их службы. Эту функцию выполняют стабилизаторы напряжения.

Существуют модели, с различными схемотехническими решениями:

  • электромеханические;
  • релейные;
  • электронные;
  • инверторные.

В основе конструкций первых трёх типов – автотрансформатор с изменяемым числом витков первичной обмотки. Суть процесса стабилизации сводится к следующему: при увеличении или уменьшении величины входного напряжения, изменяется коэффициент трансформации путём переключения витков первичной обмотки, чем обеспечивается номинальный уровень электропитания на выходе.

В приборах электромеханического типа, изменение числа витков осуществляется за счет скользящего контакта, перемещающегося по оголённой части регулировочной обмотки. Регулирование напряжения при этом происходит с шагом в один виток. Такое регулирование можно назвать плавным.

Регулировочная обмотка стабилизирующих устройств релейного типа разделена на секции, каждая из которых имеет выводы (или отпайки). Процесс регулирования носит ступенчатый характер, так как увеличение или уменьшение количества витков происходит дискретно, целыми секциями.

Подключение к сети нужной отпайки происходит контактами электромагнитного реле. Каждое реле подключает свою отпайку, то есть, количество реле равно количеству выводов обмотки регулирования.

Регулировочной (или вольтодобавочной) обмоткой называется та часть первичной обмотки автотрансформатора, в пределах которой происходит регулирование. То есть, в электромеханических стабилизаторах это наружный слой обмотки без изоляционного слоя, по которому движется скользящий контакт. В устройствах релейного типа, это – часть обмотки, ограниченная крайними выводами, к которым подключены реле.

Кроме способа регулировки стабилизирующие устройства различаются по количеству фаз. В зависимости от того, для каких сетей они предназначены, стабилизаторы бывают:

  • однофазные;
  • трёхфазные.

Большая часть трёхфазных стабилизаторов представляют три однофазных регулятора, объединённых в одном корпусе.

Существуют нюансы при стабилизации параметров электропитания в трёхфазных системах. На некоторых объектах электроснабжения отсутствуют трёхфазные потребители электрической энергии. В таких случаях, распределение по фазам отдельных однофазных ветвей схемы производится с учетом обеспечения симметричности нагрузки, то есть, равенства электрической мощности, подключенной к каждой из трёх фаз.

На таких объектах допустима замена стабилизатора напряжения трёхфазного на три однофазных, которые могут располагаться в разных местах, что иногда бывает очень удобно. Например, если в трёхэтажном здании нагрузка по фазам распределена поэтажно, то однофазные стабилизаторы можно смонтировать в силовых или осветительных щитах на каждом этаже.

В случае использования на объекте трёхфазных электродвигателей или трансформаторов, применение описанной раздельной пофазной стабилизации нежелательно. Связано это с тем, что трёхфазные стабилизирующие устройства оборудованы системами контроля симметричности фаз, отключающими нагрузку при больших перекосах напряжения в разных фазах.

Крайним случаем несимметричности является полное исчезновение электропитания по одной или двум фазам.

Если при этом применяются не связанные между собой стабилизаторы напряжения однофазные, то электрические двигатели будут продолжать работать в неполнофазном режиме, что как известно, приводит к их повреждению.

ЭЛЕКТРОННЫЙ СТАБИЛИЗАТОР

Электронными принято называть такие приборы стабилизации, в электрической схеме которых, функции переключения отпаек регулировочной обмотки автотрансформатора выполняют не контакты электромагнитных реле, а электронные ключи, построенные на симисторах или тиристорах.

Ниже представлена структурная схема симисторного стабилизатора напряжения, в котором переключение секций обмоток осуществляется ключами на симисторах.

Электронный стабилизатор напряжения

На схеме изображён электронный стабилизатор напряжения, имеющий семь ступеней регулирования, то есть, регулировочная обмотка имеет семь выводов, к каждому из которых подключен симисторный ключ. Симистор, или симметричный тиристор представляет собой электронный полупроводниковый прибор, обладающий управляемой проводимостью в двух направлениях.

Открытие ключа происходи при подаче отпирающего потенциала на управляющий электрод. Иногда вместо симисторных ключей применяются ключи на тиристорах.

Тиристорный стабилизатор

Поскольку тиристор обладает односторонней проводимостью, для использования в цепях переменного тока в тиристорных стабилизаторах напряжения используется аналог симистора, составленный из двух тиристоров, включенных встречно – параллельно. Каждый тиристор такого ключа пропускает одну полуволну тока в течение периода.

Управление электронными ключами производится микроконтроллером, постоянно отслеживающим уровень параметров питания на входе и на выходе стабилизирующего устройства. Алгоритм управления исключает одновременное открытие более одного ключа.

Электронный стабилизатор работает аналогично релейному, различие в уровне управляющих импульсов. В релейных устройствах, импульс соответствует потенциалу срабатывания реле, в электронных – величине отпирающего потенциала симисторного или тиристорного ключа.

Точность стабилизации при этом зависит от количества витков в секции обмотки регулирования. Чем чаще выполнены отпайки, тем меньше погрешность стабилизации.

Другая важная характеристика – диапазон изменения входного напряжения – зависит от общего объёма обмотки регулирования. Чем он больше, тем более значительные отклонения сетевого напряжения стабилизатор может скомпенсировать. Но для обеспечения высокой точности регулирования, обмотка должна быть разделена на достаточно мелкие секции, что при большом её объёме заставляет применять большой количество отпаек отпаек, которое вызывает увеличение количества ключей, веса и громоздкости конструкции.

При разработке стабилизаторов приходится искать компромиссное решение, обеспечивающее важнейшие технические характеристики на достаточном уровне.

Стабилизаторы электронного типа превосходят релейные по скорости переключения. Отсутствие контактов механического типа, работа которых сопровождается искрением, позволяет использовать электронные приборы в условиях повышенной взрывоопасности, что неприемлемо для устройств релейного типа.

В начало

ИНВЕРТОРНЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Развитие инверторной технологии привело к созданию стабилизирующих устройств принципиально нового вида. Инверторные стабилизаторы являются приборами двойного преобразования.

Принцип работы.

Сетевое напряжение, поступающее на вход стабилизатора, проходит через фильтр, задерживающий высокочастотные помехи и поступает на выпрямитель. Для сглаживания пульсаций, после выпрямителя устанавливается конденсатор большой ёмкости, который одновременно является накопителем энергии.

После этого выпрямленный сигнал поступает на инвертор, являющийся основной частью схемы. После инвертирования постоянного сигнала генерируется переменное синусоидальное напряжение заданной амплитуды.

Основными элементами инвертора являются IGBT – транзисторы, работа которых управляется микропроцессорным контроллером. Стабилизатор инверторного типа не производит регулирования выходного сигнала в зависимости от уровня входного, он просто создает выходной сигнал требуемого вида и амплитуды.

Инверторные приборы превосходят стабилизаторы другого вида по всем основным техническим характеристикам:

  • точности стабилизации, обычно не превышающей 1%;
  • диапазону изменения напряжения на входе;
  • скорости реагирования на изменение параметров сетевого питания.

Иногда приходится сталкиваться с вопросами такого свойства: сетевой фильтр или стабилизатор напряжения, что лучше? Теперь, ознакомившись с принципами работы и параметрами основных типов стабилизаторов, каждому станет ясно, что такая постановка вопроса совершенно неправомерна.

Сетевой фильтр – это обычно набор нескольких пассивных элементов (конденсаторов и дросселей), служащих для защиты от высокочастотных помех, поступающих из сети. То есть, сетевой фильтр не производит процесс стабилизации и не защищает оборудование от опасных скачков сетевого напряжения.

В начало

  *  *  *

© 2014-2018 г.г. Все права защищены.Материалы сайта имеют исключительно ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

video-praktik.ru

отличия, принцип работы и критерии выбора электронных стабилизирующих устройств

Автор: Александр Старченко

tiristornye-ili-simistornyeЭти два типа стабилизаторов напряжения относятся к электронным приборам. В них отсутствуют любые механические и электромеханические устройства. Они собраны полностью на полупроводниковых элементах, отличаются бесшумностью, высокой скоростью реакции на изменение напряжения и надёжностью. Такие стабилизаторы широко применяются в быту и на производстве.

Содержание:

  1. Принцип работы электронных стабилизаторов
  2. Тиристорный стабилизатор
  3. Симисторный стабилизатор
  4. Мощный электронный стабилизатор

Принцип работы электронных стабилизаторов

Принцип работы электронных стабилизаторов этого типа можно сравнить с принципом работы полупроводникового стабилизатора. В основе конструкции лежит использование мощного силового трансформатора. Только роль элементов переключающих его обмотки выполняют не электромагнитные реле, а мощные полупроводниковые ключи, собранные на тиристорах или симисторах.

Поскольку все жилые дома, а также офисы и большинство общественных учреждений питаются по двухпроводной линии, состоящей из одной фазы и нуля, то для питания различных технических устройств используется однофазный тиристорный стабилизатор напряжения. Стабилизатор напряжения состоит из следующих элементов:

  • Входной фильтр напряжения сети;
  • Плата управления и контроля;
  • Трансформатор;
  • Силовые ключи;
  • Устройство индикации.

simistornyjОчень часто в линиях электропитания переменного тока могут наводиться импульсные высокочастотные помехи, а так же короткие (5-15 мск) выбросы напряжения. Всё это может привести к нарушениям в работе электронной техники, поэтому напряжение на входе стабилизатора проходит через фильтр. Он собран на дросселях, выполненных на ферритовых кольцах и конденсаторах. Такой L/C фильтр препятствует проникновению на вход стабилизатора напряжения сетевых наводок.

Силовой трансформатор имеет секционированную вторичную обмотку, что позволяет менять коэффициент трансформации в ступенчатом режиме, и, следовательно, управлять величиной выходного напряжения. Однофазный симисторный стабилизатор напряжения собран по аналогичной схеме, а вся разница между этими стабилизаторами заключается в типе полупроводниковых ключей.

Плата управления и контроля постоянно анализирует величину напряжения сети и при её отклонении в любую сторону, с помощью электронных ключей переключает секции вторичной обмотки, изменяя тем самым величину напряжения на выходе стабилизатора. Переключающими элементами являются тиристоры или симисторы.

Схема симисторного стабилизатора напряжения может иметь до 15 переключаемых ступеней, что обеспечивает высокую точность установки напряжения на выходе. Для питания платы управления и контроля в схеме стабилизатора предусмотрен дополнительный трансформатор и выпрямитель.

Для удобства пользователей, стабилизаторы напряжения оборудованы светодиодной индикацией режимов работы:

  • «Сеть»;
  • «Нагрузка»;
  • «Перегрузка»;
  • «U вх. min»;
  • «U вх.max».

Кроме этого стабилизатор может иметь цифровой дисплей, на который выводятся данные о напряжении на входе, на выходе и частота сети переменного тока.

Тиристорный стабилизатор

tiristornyjТиристорный стабилизатор напряжения представляет собой трансформаторное устройство, в котором выравнивание напряжения осуществляется с помощью переключения обмоток силового трансформатора с помощью электронных ключей. Тиристор – это полупроводниковый прибор являющийся аналогом электромагнитного реле. Он имеет анод, катод и управляющий электрод.

Поскольку тиристор проводит ток только в одном направлении, то для работы в цепях переменного тока применяется встречно-параллельное соединение тиристоров. Следовательно, один ключ, подключающий часть обмотки трансформатора, будет состоять из двух тиристоров.

Тиристорный стабилизатор может обеспечить достаточно большую точность установки напряжения. Это достигается увеличением числа переключающих ступеней. Практические схемы электронных стабилизаторов на тиристорах могут обеспечить точность стабилизации порядка 3-5%.

Стабилизатор такого типа обладает следующими положительными качествами:

  • Высокая скорость стабилизации;
  • Хорошая защита от внешних помех;
  • Большой диапазон регулировки;
  • Высокая надёжность устройства.

При своих достоинствах, тиристорный стабилизатор напряжения имеет определённые недостатки, которые заметно ограничивают его сферу применения.

Отрицательные стороны:

  • Ограничение работы с реактивными нагрузками;
  • Потеря мощности при заниженных входных напряжениях;
  • Высокая стоимость;
  • Сложный ремонт.

Дело в том, что стабилизаторы напряжения собранные на тиристорах выдают на выходе форму напряжения далёкую от синусоидальной. Она может иметь форму трапеции или меандра. Питание электродвигателей от такого стабилизатора, особенно асинхронного типа, может привести к выходу мотора из строя. Существуют модели стабилизаторов, которые выдают нормальную форму напряжения на выходе, но такие устройства имеют сложную электронную схему и стоят заметно дороже. В связи с этим сфера применения данных стабилизаторов уже ограничивается, их нельзя будет использовать в качестве стабилизаторов для циркуляционных насосов в системах отопления, скважинах, и т. д.

sxema-tirstornogo-stabilizatora

Тиристорный стабилизатор напряжения при работе сам является источником помех, поэтому к нему не рекомендуется подключать измерительную аппаратуру высокой точности.

Симисторный стабилизатор

simistornyj-stabilizatorВ этом устройстве в качестве электронных ключей, управляющих переключением секций силового трансформатора, используются симисторы. Это полупроводниковые приборы, объединяющие в одном корпусе два тиристора. Симистор, или симметричный тиристор, проводит ток в двух направлениях, поэтому силовой ключ выполнен на одном полупроводниковом приборе.

Симисторный стабилизатор напряжения имеет ряд недостатков по сравнению с тиристорными устройствами. Стабилизатор очень критичен к выбросам напряжения при работе с индуктивной нагрузкой. Вместе с тем он обеспечивает высокую точность регулирования.

В отличие от электромагнитных реле, симисторы переключаются за короткий промежуток времени, а отсутствие контактов и других механических элементов делает такие стабилизаторы очень надёжными. Мощные электронные ключи сильно нагреваются в процессе работы, поэтому симисторы монтируются на радиаторы, что увеличивает габариты прибора. Для лучшего охлаждения электронных компонентов симисторный стабилизатор напряжения оборудуется вентилятором.

Мощный электронный стабилизатор

energiya-tiristornyj-stabilizatorОдним из лидеров в производстве энергетических систем является компания «Энергия», она применяет в своих разработках инновационные технологии, что позволяет свести до минимума некоторые недостатки тиристорных стабилизаторов напряжения.

Однофазный тиристорный стабилизатор «Энергия Classic 12 000» представляет собой современное и надёжное устройство с высокими параметрами. Устройство работает в интервале входных напряжений от 125 до 254 вольт. Предельно допустимые величины могут составлять 60 вольт по минимуму и 265 вольт по максимуму. Стабилизатор имеет переключающую схему на 12 ступеней, выполненную на мощных тиристорах. Время переключения не превышает 20 мс.

Стабилизатор имеет защиту от пониженного напряжения, повышенного напряжения и перегрузки. При температуре силового  трансформатора свыше 120°C так же срабатывает защита и стабилизатор отключается. Допустимая кратковременная перегрузка до 180%, может составлять 0,3 секунды. Входной фильтр подавляет все виды высокочастотных и импульсных помех. При питании нагрузки с нормальным напряжением сети используется система «байпас». Данный стабилизатор компании Энергия рассчитан на эксплуатацию в отапливаемом помещении с уровнем влажности не более 80%.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

nabludaykin.ru

Преимущества инверторных стабилизаторов Штиль

Благодаря инновационному устройству и принципу работы, на сегодняшний день и обладают рядом неоспоримых преимуществ перед стабилизаторами предыдущего поколения:

  1. Обеспечивают точное стабилизированное синусоидальное напряжение на выходе в широком диапазоне колебаний входного напряжения: 90—310 В.
  2. Поддерживают выходное напряжение на заданном уровне независимо от скачков напряжения входной сети.
  3. Обеспечивают бесперебойное питание нагрузки стабилизированным напряжением заданного уровня в течение 200 мс при кратковременном пропадании входного напряжения за счёт наличия накопителя энергии (конденсатора).
  4. Поддерживают идеальную синусоидальную форму выходного напряжения независимо от наличия искажений на входе.
  5. Обладают системой управления, построенной на основе цифрового сигнального микропроцессора последнего поколения, что обеспечивает мгновенную реакцию на изменение входного напряжения сети — 0 мс.
  6. Имеют многоуровневую электронную аварийную защиту с восстановлением от короткого замыкания, перегрузки, перегрева, аварии сети (напряжение входной сети за пределами диапазона 90—310 В).
  7. Поддерживают непрерывное регулирование выходного напряжения, что исключает ряд неприятных эффектов, например, мигание лампочек накаливания при переключении порогов стабилизации в стабилизаторах предыдущего поколения.
  8. Содержат корректор входного коэффициента мощности, что обеспечивает синусоидальную форму потребляемого тока.
  9. Имеют низкий уровень шума, небольшой вес и габариты.
  10. Обладают высоким КПД — до 97%.
Принцип работы и конструктивные особенности инверторных стабилизаторов Штиль серий ИнСтаб и ИнСтаб+

Конструктивно инверторные стабилизаторы Штиль совершенно отличаются от электромеханических, релейных и симисторных стабилизаторов. Они не имеют в своем составе 50-герцового автоматического трансформатора, подвижных элементов или реле. Основными компонентами инверторных стабилизаторов являются: выпрямитель с корректором коэффициента мощности, инвертор, накопитель энергии, а также входной и выходной фильтры высоких частот. Работой каждой составной части инверторного стабилизатора управляет высокопроизводительный цифровой сигнальный микропроцессор.

По принципу работы инверторный стабилизатор Штиль также совершенно отличен от стабилизаторов предыдущего поколения.

Работа инверторных стабилизаторов Штиль серий основана на двойном преобразовании энергии (напряжения): входное переменное напряжение электросети преобразуется сначала выпрямителем в стабилизированное напряжение постоянного тока, а затем инвертором в выходное переменное напряжение синусоидальной формы для питания нагрузки, подключенной к изделию. Благодаря такому принципу преобразования выходное напряжение не подвержено влиянию колебаний входного напряжения, что позволяет за счёт непрерывного регулирования поддерживать высокую точность стабилизации и идеальную синусоидальную форму выходного напряжения.

Принцип работы инверторного стабилизаторы Штиль отображен на структурной схеме:

Основные компоненты инверторных стабилизаторов Штиль
1. Блок выпрямителя с корректором коэффициента мощности Блок Выпрямителя осуществляет процесс преобразования входного переменного напряжения в постоянное. Корректор коэффициента мощности обеспечивает синусоидальную форму потребляемого тока, компенсируя реактивную составляющую мощности нагрузки.
2. Накопительное устройство Позволяет буферизировать входную энергию, что исключает мгновенное изменение выходного напряжения при изменении входного и дает возможность осуществлять коррекцию напряжения сети.
3. Инвертор Преобразует постоянное промежуточное напряжение на конденсаторе в синусоидальное выходное напряжение.
4. Цифровой сигнальный микроконтроллер на основе DSP-микропроцессора Выполняет оценку режима работы, управление процессом преобразования энергии, высокочастотное ШИМ-регулирование основных электроэнергетических параметров стабилизатора: действующего значения входного напряжения, формы потребляемого тока, формы выходного напряжения и т.д.
5. Входной и выходной фильтры Обеспечивают защиту нагрузки от помех, поступающих из сети переменного тока
Методика выбора инверторных стабилизаторов Штиль серии ИнСтаб и ИнСтаб+
1. Количество фаз

Зависит от типа сети:

  • Однофазная сеть — однофазный стабилизатор;
  • Трёхфазная сеть — трёхфазный стабилизатор или три однофазных.

Стоит учесть, что в случае возникновения неполадок в одной из фаз при использовании трёхфазного стабилизатора его защита отключит все три фазы, а при использовании трёх однофазных стабилизаторов отключится только одна фаза, в которой возникли неполадки.

2. Диапазон входного напряжения

Определите амплитуду колебаний входного напряжения и прибавьте к этому значению некоторый запас. Пределы колебаний напряжения измеряются при помощи обычного вольтметра. Зная диапазон колебаний сетевого напряжения, вы без труда сможете оценить, подходит ли вам та или иная модель по данному параметру.

Инверторные стабилизаторы Штиль серий ИнСтаб и ИнСтаб+ стабилизируют выходное напряжение в очень широком диапазоне колебаний входного напряжения: 90—310 В.

Следует также учесть, что при значении входного напряжения ниже 165 В нагрузочная способность стабилизатора снижается. В этих случаях необходимо выбирать модель с учётом дополнительного запаса по мощности.

3. Номинальная мощность

Определите суммарную мощность всех электроприборов, которые планируете подключить к стабилизатору. Здесь также следует учесть коэффициент мощности, значение которого варьируется от 0,7 до 1 в зависимости от типа нагрузки сети. Этот коэффициент учитывает реактивную составляющую мощности. В случаях подключения приборов с электродвигателями необходимо также знать, что в момент запуска любой электродвигатель потребляет энергию, превышающую ту, которую он потребляет в обычном режиме, и ток в цепи в этот момент тоже существенно превышает номинальный.

Модельный ряд инверторных стабилизаторов Штиль серий ИнСтаб и ИнСтаб+ представлен однофазными моделями мощностью от 350 ВА до 20 кВА и трёхфазными моделями мощностью от 6 до 20 кВА!

Специалисты ГК Штиль советуют выбирать стабилизатор с дополнительным запасом мощности на случай возможной установки дополнительных потребителей в будущем.

4. Серия стабилизатора (ИнСтаб или ИнСтаб+)

ГК Штиль выпускает две линейки инверторных стабилизаторов: ИнСтаб и ИнСтаб+. Модели обеих линеек обладают всеми преимуществами инверторных стабилизаторов, однако при выборе модульных решений серии ИнСтаб+ вы получите дополнительную возможность построения резервируемых конфигураций по схеме N+1, что будет особо актуально для ответственных объектов, требующих бескомпромиссной надежности.

Модель ряд модульных инверторных стабилизаторов Штиль серии ИнСтаб+ представлен однофазными моделями мощностью от 500 ВА до 14 кВА.

www.solarbreeze.ru

Виды стабилизаторов напряжения: релейные, тиристорные, инверторные, электромеханические

13.04.2018

В настоящее время возрастает спрос на стабилизаторы напряжения. Это связано как с активным использованием этих электроприборов во всех сферах жизнедеятельности современного человека, так и с периодически возникающими в сетях проблемами с качеством электроэнергии.

Специализированные магазины и интернет-сайты предлагают большой выбор стабилизаторов отечественного и зарубежного производства, удовлетворяющих практически любые запросы покупателей. Однако следует понимать, что каждый стабилизатор, несмотря на его мощность и стоимость, построен по типовой схеме (топологии), в основе которой – определённый физический принцип стабилизации электрической энергии. Всего таких топологий пять:

  • феррорезонансная;
  • электромеханическая;
  • релейная;
  • полупроводниковая;
  • инверторная.

Практически все виды стабилизаторов напряжения имеют свои преимущества и недостатки, которые в основном обусловлены схемой их построения. Основные параметры устройств каждого типа требуют пристального изучения, так как именно от их значений зависит эффективность работы выбранной модели стабилизатора с различной современной аппаратурой.

Феррорезонансные стабилизаторы

Феррорезонансный стабилизатор

Это первые стабилизаторы, получившие широкое распространение в нашей стране. Начало их массового использования в 50-60-х годах ХХ века связано с появлением ламповых телевизоров и прочей бытовой техники, требующей защиты от сетевых колебаний.

Устройство и принцип работы. Стабилизаторы такого типа отличаются от большинства более современных моделей простотой электронной схемы и отсутствием автотрансформатора. Они понижают или повышают значение напряжения за счёт эффекта феррорезонанса – электромагнитного взаимодействия между двумя дросселями один из которых имеет ненасыщенный сердечник (входной), а второй насыщенный (выходной).

Преимущества. Феррорезонансные стабилизаторы не имеют склонных к поломкам подвижных компонентов, что обеспечивает их надёжность и большой ресурс безотказной работы – некоторые изделия советского производства до сих пор находятся в обиходе и исправно выполняют свою работу. Другие преимущества данной топологии:

  • надёжность и большой ресурс безотказной работы благодаря отсутствию склонных к поломкам подвижных компонентов;
  • высокая точность выходного напряжения за счёт плавного, безразрывного регулирования сетевого сигнала;
  • устойчивость к неблагоприятным условиям окружающей среды;
  • быстродействие.

Недостатки. Отвечающее современному уровню комфорта бытовое использование феррорезонансных стабилизаторов осложняется рядом свойственных им недостатков:

  • шумность работы – гул от встроенных трансформаторов ощущается даже через стену;
  • повышенное тепловыделение;
  • большой вес и крупные габариты;
  • малый диапазон регулируемого входного напряжения – более узкий, чем предельные значения отклонений, встречающихся в отечественных сетях;
  • невысокий КПД вследствие значительных потерь энергии на нагрев;
  • неспособность работать при перегрузках и на холостом ходу;
  • искажения синусоиды.

Стоить отметить, что все указанные недостатки характерны в первую очередь для классических феррорезонансных стабилизаторов первых поколений, в устройствах нового образца они максимально снижены или полностью исключены. Существенный минус современных моделей этой топологии - это их высокая цена, превышающая не только стоимость изделий других типов, но и on-line ИБП соответствующей мощности.

Применение. Несмотря на серьезные сдвиги в разработке более производительных, мощных и надежных преобразователей напряжения, устаревшие феррорезонансные стабилизаторы все еще пользуются спросом при работе с неприхотливой техникой такого же старого поколения. Приборы этой группы - не самый удачный вариант для бытового пользования по причине высокого уровня шумов и громоздкости конструкции, однако вполне могут быть использованы в подсобных помещениях или на загородных усадьбах при плюсовых температурах.

Электромеханические стабилизаторы

Электромеханический стабилизатор

Устройство и принцип работы. Стабилизаторы данного типа появились практически одновременно с феррорезонансными, но имеют отличные от них конструкцию и принцип работы. Главные элементы любого устройства данной топологии – автотрансформатор и подвижный токосъёмный контакт, выполненный в виде ролика, ползунка или щетки. Указанный контакт перемещается по обмотке трансформатора, вследствие чего происходит плавное увеличение или уменьшение коэффициента трансформации и соответствующее изменение (коррекция) поступающего из сети напряжения. Первые электромеханические стабилизаторы имели ручную регулировку – специальный бегунок передвигался по катушке и отключал или подключал витки до количества, необходимого для достижения номинального значения выходного напряжения. В современных устройствах этот процесс автоматизирован: плата управления анализирует входной ток и в случае отклонения его параметров сигнализирует сервоприводу, перекатывающему коммутационный контакт на сегмент тороидальной обмотки автотрансформатора с напряжением, максимально приближенным к номинальному.

Преимущества. Основное достоинство электромеханического принципа стабилизации напряжения – непрерывное регулирование с высокой точностью и без искажения синусоидальной формы сигнала. Также ключевым преимуществом является самая низкая стоимость электромеханических стабилизаторов на отечественном рынке.

Недостатки. Эти устройства имеют и ряд существенных недостатков, делающих их не самым оптимальным решением для защиты многих видов нагрузки, а именно:

  • низкое (за исключением некоторых моделей) быстродействие – скорость реакции на изменение входного сигнала ограничивается временем, требуемым сервоприводу для срабатывания;
  • возникновение кратковременных скачков выходного напряжения при резких перепадах входного, что пагубно влияет на чувствительные электронные компоненты защищаемого оборудования и осложняет применение в сетях с сильными перепадами напряжения;
  • низкое качество фильтрации входных электромагнитных помех и трансляция возмущающего воздействия на выход устройства;
  • низкая надежность из-за механически движущихся деталей, что значительно сокращает срок эксплуатации устройства, из-за чего именно этот тип стабилизаторов чаще всего выходит из строя.

Дополнительные неудобства при эксплуатации электромеханических стабилизаторов в домашних условиях создают:

  • повышенный уровень шума и возможное искрение при работе – следствие движения сервопривода по виткам катушки;
  • громоздкая конструкция, большое количество механических узлов и деталей, и, соответственно, большой вес;
  • необходимость периодического обслуживания подверженного износу узла механического контакта, надёжность которого снижается пропорционально числу срабатываний.

Кроме того, приборы этой группы могут давать сбои при длительном использовании в условиях отрицательной температуры – такому оборудованию комфортнее в отапливаемых помещениях.

Применение. Перечисленные недостатки обуславливают ограниченную сферу применения электромеханических стабилизаторов - они все еще востребованы в сетях без молниеносных скачков напряжения. Разумеется, такие устройства не подходят для бытового использования в домашних условиях, но вполне удачно используются в качестве временной стабилизации напряжения в подсобном хозяйстве, гаражах, небольших мастерских - там, где снижение температуры незначительно. Хотя рассматриваемый тип преобразователей постепенно уходит в прошлое и уступает место более современным конструкциям на релейной и тиристорной основе.

Релейные стабилизаторы

Релейный стабилизатор

Устройство и принцип работы. Приборы этой топологии относятся к электронным устройствам, действие которых построено на базе дискретного (ступенчатого) принципа стабилизации электроэнергии. Он заключается в автоматическом переключении обмоток автотрансформатора и выбора той, напряжение на которой максимально близко к номинальному. Коммутация необходимых для повышения или снижения входного напряжения контуров происходит благодаря срабатыванию силовых электронных реле (отсюда и название данной разновидности стабилизаторов). Управление процессом осуществляет специальный блок. Он контролирует характеристики сетевого напряжения и при их отклонении от установленного значения включает в работу ту или иную ступень стабилизации (количество ступеней соответствует числу установленных реле).

Преимущества. Основное преимущество этих устройств перед электромеханическими аппаратами устаревших конструкций – повышенная скорость срабатывания (не более 10-20 мс). Кроме того, релейные стабилизаторы обладают простейшей структурой, в которой исключены сложные узлы и дорогостоящие компоненты, что упрощает их техническое обслуживание и ремонт. Ремонтные работы, как и сами приборы, отличаются низкой стоимостью. Релейные стабилизаторы не боятся перегрузок, чем и обусловлен их длительный срок эксплуатации. Также этот тип устройств выделяется сравнительно небольшими габаритами и малым весом. Они не требуют дополнительного охлаждения и отлично справляются со своими функциями в условиях отрицательных температур.

Недостатки. Главный недостаток релейных стабилизаторов напряжения – дискретное (неплавное) регулирование. Он обусловлен принципом работы и проявляется в виде мигания электрических ламп при переключении ступеней стабилизации. Cтупенчатая корректировка напряжения также:

  • снижает точность стабилизации (может достигать 10%), при этом рост быстродействия релейных устройств неминуемо повышает погрешность в их работе;
  • способствует трансляции искажений сетевой синусоиды на выход устройства.

Релейная топология сохраняет и ряд минусов присущих электромеханическим изделиям:

  • работа стабилизатора не бесшумна – срабатывание сопровождается звуковым эффектом подобным щелчку;
  • реле подвержены механическому износу, в меньшей степени чем элементы сервопривода, но тенденция к ухудшению качества работы с увеличением срока эксплуатации сохраняется.

Применение. Релейные стабилизаторы подходят для защиты маломощных приборов в сетях, характеризующихся небольшими колебаниями напряжения. Вышеперечисленные недостатки говорят о недостаточном соответствии приборов этой группы требованиям по защите современной электроники, чувствительной к малейшим отклонениям питающего напряжения.

Тиристорные стабилизаторы

Тиристорный стабилизатор

Устройство и принцип работы. Данные устройства можно рассматривать как результат развития и усовершенствования дискретного принципа стабилизации. Их конструкция и принцип работы схожи с аппаратами релейной топологии. Главное различие состоит в том, что переключение обмоток автотрансформатора выполняют не реле, а полупроводниковые силовые ключи – тиристоры, увеличивающие точность стабилизации и делающие работу устройства практически бесшумной.

Преимущества. Исполнительные блоки на базе полупроводниковых элементов не имеют механических деталей и обеспечивают минимальное время реакции на изменение входного напряжения (однако некоторая задержка всё-таки сохраняется). Кроме бесшумной работы, быстродействия и увеличенной (относительно релейных моделей) точности стабилизации тиристорные стабилизаторы обладают следующими преимуществами:

  • долговечность и надежность – полупроводниковые компоненты не подвержены механическому износу и имеют большой рабочий ресурс;
  • широкий диапазон сетевого напряжения – возможна работа с большинством предельных отклонений;
  • отсутствие генерации электромагнитных помех при работе;
  • устойчивость к низким и высоким температурам окружающей среды;
  • скромные габариты и небольшой вес;
  • высокий КПД - отсутствие обмоток, реле и движимых элементов снижает уровень собственного энергопотребления.

Недостатки. Применение тиристорных ключей не способно полностью исключить основной недостаток дискретного принципа работы – ступенчатые скачки напряжения. Они неминуемо возникают при переключении трансформаторных обмоток и снижают точность стабилизации, повышение которой, как и в релейных моделях, негативно влияет на быстродействие устройства. Даже самые современные стабилизаторы на полупроводниковых элементах не гарантируют безразрывное электропитание и сигнал идеальной синусоидальной формы. Определённые проблемы могут возникнуть, например, при работе с профессиональным аудио-видео оборудованием – помехи создаваемые при ступенчатом переключении отрицательно скажутся на качестве картинки и звука. Ещё один минус тиристорных стабилизаторов – чувствительность к перегрузкам, которые могут привести к выходу из строя электронных ключей и дорогостоящему ремонту.

Симисторные стабилизаторы

Симисторный стабилизатор

Поскольку симисторы являются одним из типов тиристоров, то и принцип работы стабилизаторов на их базе существенно не различаются. Разница заключается в том, что в отличие от тиристоров, симисторы способны пропускать ток в обоих направлениях, поэтому нет необходимости в параллельно-встречном подключении двух тиристоров. Также при подключении индуктивной нагрузки симисторы более уязвимы для скачков напряжения, нежели тиристоры, и требуют дополнительной защиты. Хотя этот недостаток компенсируется тем, что в симисторных устройствах применяется более простая электронная схема.

В целом же симисторные стабилизаторы обладают теми же преимуществами, что и тиристорные:

  • низкий уровень шума при работе;
  • быстрое реагирование на сетевые изменения, скорость составляет 10-20 мс;
  • высокий уровень КПД, достигающий 98%, что выделяет их среди конкурентов более старых поколений;
  • устойчивость к перегрузкам - например, тиристорные стабилизаторы способны проработать до 12 часов при перегрузке в 20%;
  • долговечность прибора при работе на износ, но в то же время дорогостоящий ремонт в случае выхода из строя одного из компонентов;
  • способность выдерживать температурные перепады, но уязвимость для повышенных уровней влажности.

Также устройства не лишены некоторых недостатков:

  • низкая точность регулирования, обусловленная ступенчатой стабилизацией;
  • более габаритная конструкция, по сравнению с тиристорными стабилизаторами;
  • высокая стоимость в сравнении с релейными моделями.

Подводя итог по тиристорным и симисторным моделям следует уточнить, что по параметрам они не намного превосходят релейные стабилизаторы, хотя их стоимость выше и в случае возникновения неисправности замена электронных компонентов обойдется дороже. Тем не менее, такие приборы пользуются спросом и в домашних условиях, и на даче, поскольку неприхотливы к окружающей среде и в то же время не создают шума. Однако крайне не рекомендуется подключать высокоточное оборудование к тиристорным/симисторным стабилизаторам.

Инверторные стабилизаторы

Современные инверторные стабилизаторы Штиль серии "Инстаб"

Это наиболее «молодой» вид стабилизаторов – серийное производство начато в конце 2000-х годов. Инновационная конструкция и характеристики, недоступные для моделей других топологий, делают данные устройства прорывом в стабилизации электрической энергии.

Устройство и принцип работы. Принцип действия данных устройств схож с on-line ИБП и построен на базе прогрессивной технологии двойного преобразования энергии. Сначала выпрямитель превращает входное переменное напряжение в постоянное, которое затем накапливается в промежуточных конденсаторах и подаётся на инвертор, осуществляющий обратное преобразование в переменное стабилизированное выходное напряжение. Инверторные стабилизаторы кардинально отличаются от релейных, тиристорных и электромеханических по внутреннему строению. В частности, в них отсутствует автотрансформатор и любые подвижные элементы, в том числе и реле. Соответственно, стабилизаторы двойного преобразования избавлены от недостатков, присущих трансформаторным моделям.

Преимущества. Алгоритм работы этой группы устройств исключает трансляцию любого внешнего возмущающего воздействия на выход, что обеспечивает полную защиту от большинства проблем электроснабжения и гарантирует питание нагрузки напряжением идеальной синусоидальной формы со значением максимально приближенным к номинальному (точность ±2%). Кроме того, инверторная топология устраняет все недостатки характерные другим принципам стабилизации электрической энергии и обеспечивает моделям, реализованным на её базе, уникальное быстродействие – стабилизатор реагирует на изменение входного сигнала мгновенно, без задержек во времени (0 мс)!

Другие важные преимущества инверторных стабилизаторов:

  • максимально широкие границы рабочего сетевого напряжения – от 90 до 310 В, при этом идеальная синусоидальная форма выходного сигнала сохраняется во всем указанном диапазоне;
  • непрерывное бесступенчатое регулирование напряжения – исключает ряд неприятных эффектов, связанных с переключением порогов стабилизации в электронных (релейных и полупроводниковых) моделях;
  • отсутствие автотрансформатора и подвижных механических контактов – повышает ресурс работы и снижает массу изделия;
  • наличие входного и выходного фильтров высоких частот – эффективно подавляют возникающие помехи (присутствуют не во всех моделях, характерны в частности для продукции ГК «Штиль» – ведущего производителя инверторных стабилизаторов).

Возникает закономерный вопрос - есть ли недостатки у инверторных устройств? Единственным и в то же время спорным недостатком является более высокая цена. Но учитывая технические требования современной бытовой техники и одновременно сохраняющуюся тенденцию перепадов сетевого напряжения, инверторные стабилизаторы сегодня являются самым экономически оправданным вариантом для постоянного пользования как в частных домах и загородных коттеджах, так и на промышленных объектах. Они гарантируют устойчивое, корректное функционирование дорогостоящей бытовой техники и чувствительных электронных устройств при любом качестве питающей электросети.

Подробнее по этой теме читайте ниже:

Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.

www.shtyl.ru