Мощность инверторов МАП Энергия. Как определить мощность инвертора


Расчет мощности инвертора

В этой статье вы узнаете, на какие характеристики преобразователей нужно обратить внимание и как рассчитать выходную мощность с инвертора.

Основные характеристики инверторов, влияющие на выбор оборудования

  1. Форма напряжения. Одна из самых важных характеристик. Идеальный вариант — универсальный инвертор с «чистой синусоидой». К такому агрегату можно подключить любую технику, и она будет стабильно работать.
  2. Пиковая выходная мощность с инвертора. Эта характеристика показывает, какую максимальную нагрузку выдержит преобразователь. Значение нужно учитывать, если вы планируете подключать такие устройства, как компрессоры, насосы, холодильники, электродвигатели и другое оборудование, имеющее высокую стартовую мощность.
  3. Сила тока ЗУ (при наличии). Определяет, какую максимальную емкость будет восстанавливать зарядное устройство.
  4. Возможность работы со всеми типами АКБ. Разные аккумуляторные батареи заряжаются при определенных напряжениях.
  5. Номинальная мощность. От нее зависят количество и характеристики одновременно подведенных нагрузок.

Кроме этого, нужно обратить внимание на возможность работы оборудования в автоматическом режиме. Такие функции, как сон и автоматическое переключение на наиболее оптимальный источник энергии, не только облегчают и упрощают процесс эксплуатации преобразователей, но и помогают сэкономить на оплате счетов за электричество.

Далее мы покажем, как подобрать наиболее подходящее по мощности оборудование.

Процесс расчета номинальной и пиковой мощностей инвертора

Расчет мощности инвертора потребует построения специальной таблицы. В два столбца внесите список электроприборов и потребляемую ими мощность. Получится примерно так.

Наименование потребителя Мощность, Вт
Энергосберегающая лампа 18
Энергосберегающая лампа 11
Холодильник 300
Телевизор 160
Стиральная машина 1400
Утюг 1400
Ноутбук 340
Пылесос 800
Электрочайник 1100
Микроволновка 1500
Фен 500

Представленные выше цифры нельзя использовать для вычисления нагрузки. Мы заполнили таблицу данными лишь для того, чтобы показать пример расчетов.

Постарайтесь ничего не забыть — в противном случае система не обеспечит нагрузку энергией. Учтите, что приборы одной категории могут иметь разное энергопотребление. Это должно быть также отражено в таблице (пример — энергосберегающие лампы). Данные о потребляемой бытовыми приборами мощности вы найдете либо на корпусах изделий, либо в инструкциях по эксплуатации.

Отметьте в таблице устройства, которые будут подключены к инвертору для одновременной автономной работы от аккумулятора. Возьмем для примера освещение, холодильник и телевизор. Рассчитаем общую мощность этих устройств — 5*18+2*11+300+160= 572 Вт. Округляем значение в большую сторону и получаем 600 Вт.

Для расчета выходной мощности инвертора потребуется также время автономной работы техники. Возьмем, к примеру, 5 часов. Мощность, которую холодильник, телевизор и освещение потребят за это время, — 5*600=3 000 Вт.

Следует также учесть пиковую нагрузку. Полученное значение нужно умножить на коэффициент 1,3. Итого: 3 000*1,3=3 900 Вт. Это значит, что вам подойдут модели с мощностью выше 4 000 Вт.

Чтобы перевести результат в вольт-амперы, умножьте полученное значение на 0,6. Получается 3600*0,6 = 2 160 ВА. Округляем значение до 2 200 ВА.

Здесь мы рассмотрели самый простой пример расчета выходной мощности с инвертора. Если же вы хотите запитать от системы весь коттедж или большое количество приборов, часть которых будет работать непрерывно, а часть — нет, потребуются гораздо более сложные вычисления. Придется также учесть постоянство нагрузок, температуру окружающий среды и другие параметры.

Если вы не уверены в своих силах, или на изучение данных и выполнение расчетов не хватает времени, обратитесь к профессионалам. Опытные специалисты сделают все быстро и правильно. Вы сэкономите время и нервы.

23 января 2017

  • Расчет мощности инвертора

www.vega-volt.ru

Правильный выбор оборудования для резервного электроснабжения

В данной статье мы расскажем о том, как правильно выбрать оборудование для резервного электроснабжения Вашего объекта с учетом параметров электрооборудования на объекте, требуемого времени автономной работы и прочих условий.

Для чего нужен инвертор

Качественное бесперебойное электроснабжение является важным критерием для любого объекта, будь то частный коттедж, офисное помещение или специализированный объект (например, узел связи в сфере телекоммуникаций).

Что такое инвертор? Инвертор это устройство для преобразования постоянного тока в переменный с изменением величины частоты и/или напряжения.

Что такое внезапное исчезновение электроснабжения в жилом доме:

  • потраченное время и нервы - никогда неизвестно как долго это продлится, а происходит это в 99% случае без предварительного уведомления
  • потенциально вышедшее из строя дорогостоящее оборудование - плазменные панели, домашние кинотеатры, холодильники, насосные установки, котлы отопления и прочее; все это дополнительные, ненужные Вам расходы, которые никто не возместит
  • безопасность Вашего дома - при отсутствии электричества дорогостоящее охранное оборудование и системы пожарной сигнализации становятся бесполезны
  • в холодное время года более или менее длительное отключение питания приведет к тому, что котельное оборудование перестанет работать и отапливать Ваше жилище

Этот список может быть продолжен. Но главное, что это происходит при полном отсутствии вины и контроля с Вашей стороны, а затраты на возмещение таких аварий обычно ложатся на Ваши плечи.

Инвертор это надежное и технологичное решение этих проблем. Почему инвертор, а не генератор? Сравнению двух этих решений можно посвятить отдельную статью, которая в ближайшее время появится у нас на сайте.

Что такое временное отсутствие электроснабжения на промышленном объекте, например, на узле связи телекоммуникационной компании

  • недовольные клиенты, расторгнутые договора, потеря прибыли
  • испорченная профессиональная репутация
  • потенциально вышедшее из строя оборудование - дополнительные, ненужные расходы (в дополнение к недовольным клиентам)
  • безвозвратно потраченное время на решение проблем, связанных с перебоями в электроснабжении

Это основной перечень проблем, лежащих на поверхности. Почему инвертор, а не источник бесперебойного питания? На нашем сайте Вы найдете статью, посвященную сравнению этих двух решений - инвертор против ИБП.

Как определить необходимую мощность инвертора

В данной статье, в качестве примера, мы рассмотрим выбор оборудования (инвертора и аккумуляторных батарей) для частного дома.

Чтобы правильно выбрать инвертор 12-220 необходимо знать, какая нагрузка может быть включена одновременно и характер этой нагрузки (активный или реактивный). Общая суммарная мощность нагрузки определит понимание того, какой номинальной мощности инвертор нам потребуется.

Типы нагрузки

Для оценки мощности нам пригодится немного скучной, но крайне необходимой и полезной теории.

При оценке мощности нагрузки необходимо учитывать полную мощность. Полная мощность (измеряется в вольт-амперах, ВА) - это вся мощность, потребляемая электроприбором. Она состоит из активной мощности (измеряется в Ваттах, Вт) и реактивной мощности (измеряется в вольт-амперах) составляющих.

Активные нагрузки это такие нагрузки, у которых вся потребляемая электроэнергия переходи в тепло. Сюда можно отнести лампы накаливания, утюг, электрическую плиту, обогреватель и прочее.

Реактивные нагрузки - фактически это все остальное. Сюда можно отнести люминесцентные лампы, приборы с электродвигателями (холодильник), трансформаторы, блоки питания современной бытовой техники.

Расчет активной нагрузки крайне прост - 1 кВт равен 1 кВА. Соответственно, если на приборе указана потребляемая мощность 1 кВт, то полная мощность будет равна 1 кВА. В этом случае нам подойдет инвертор номинальной мощностью до 1 кВт. Однако, на практике, всегда необходимо закладывать запас 15-20% от номинальной нагрузки.

Реактивные нагрузки используют не всю переданную им энергию. Они частично запасают ее с последующей отдачей в электрическую цепь. Соответственно для них полная мощность P, необходимая для работы, больше чем активная мощность Pa. Она рассчитывается по формуле P=Pa/cosφ.

Это очень важно, поскольку номинальная мощность инвертора указывается в ВА, а номинальная мощность электроприборов зачастую указана в Вт (только активная составляющая). Не учитывая прирост мощности, расчет будет произведен ошибочно и будет выбран инвертор недостаточной номинальной мощности.

Величина cosφ, в некоторых случаях, указана в документации на прибор.

Например, на приборе указано, что активная мощность составляет 700 Вт, а cosφ равен 0,5. Полная мощность, потребляемая таким прибором, составит P=Pa/cosφ=700/0,5=1400 ВА.

Если величина cosφ не указана ни на приборе, ни в документации на него, данный коэффициент принимается равным 0,7. В этом случае формула будет иметь вид P=Pa/0,7.

Пусковая мощность

Крайне важно при расчете не забыть учесть пусковые токи. Дело в том, что любой электродвигатель в момент его запуска, потребляет электроэнергию в несколько раз больше, чем в установившемся режиме работы. Эта величина называется кратностью пускового тока.

В зависимости от типа электродвигателя, наличия или отсутствия устройства плавного запуска он варьируется от 3 до 7. В момент запуска электрических приборов с электродвигателями (насосы, электрические дрели, холодильники) потребляемую мощность нагрузки необходимо умножить как минимум в 3-5 раз. Длительность пусковых токов обычно составляет от 0,25 до 0,5 с.

Суммарно пусковую мощность не рассчитывают, поскольку это означало бы одновременный запуск (с точностью до долей секунды) всех электроприборов, что практически не происходит. При расчете необходимо ориентироваться на максимальную величину из всех электроприборов такого типа.

Подведем итог - инвертор должен выдерживать перегрузку не меньше суммарной мощности постоянной нагрузки и наибольшей из пусковых мощностей.

Типовой расчет

В частном доме с большой вероятностью одновременно будут работать следующие приборы

Прибор Мощность Кол-во Нагрузка Пусковая мощность Часов в день Потребление в сутки Среднечасовая нагрузка
электролампа 75 Вт 4 300 ВА  1500 ВА 5 1500 кВА-ч  150 ВА
холодильник* 250 Вт  1
357 ВА
1071 ВА 6 2142 кВА-ч 89 ВА
телевизор 400 Вт 1 400 ВА 2000 ВА 5 2000 кВА-ч 200 ВА
котел 150 Вт 1 150 ВА 450 ВА 24 3600 кВА-ч 150 ВА
циркуляционный насос 90 Вт 4 516 ВА 1548 ВА 24 12384 кВА-ч 516 ВА

* в отличии от остальных приборов в таблице, работающих непрерывно, холодильник работает примерно 15 минут в час.

Итого потребляемая мощность постоянно работающих приборов составляет 1723 ВА.

На непродолжительное время могут включаться достаточно мощные потребители. Среди них насосы водоснабжения или привод автоматических ворот. Естественно, что при работе от  батарей не нужно использовать, например, стиральную машину. Однако, использовать чайник вполне допустимо, поскольку в пересчете на среднечасовые показатели это мало повлияет на разряд батарей.

 

Прибор Мощность Кол-во Нагрузка Пусковая мощность Часов в день Потребление в сутки Среднечасовая нагрузка
электрочайник 1000 Вт 1 1000 ВА 1000 ВА 0,3 300 кВА-ч  30 ВА
погружной насос 2000 Вт  1 2857 ВА 8571 ВА 0,3 857 кВА-ч 86 ВА
привод ворот 500 Вт 1 714 ВА 2142 ВА 0,1 71 кВА-ч 7 ВА

При расчете мы учитывали, что время работы составляет для электрочайника 4 минуты, погружного насоса - 6 минут в час, привод ворот работает в течение 1 минуты.

Одновременное функционирование всех этих приборов крайне маловероятно, поэтому к суммарной мощности постоянно работающих приборов добавляем только самый мощный из этих показателей - погружной насос.

С учетом максимальной мощности погружного насоса, потребляемая мощность суммарно работающих приборов составит 4580 ВА.

При этом мы учитываем самую большую пусковую мощность из всего перечня приборов. В данном случае это потребитель тот же самый погружной насос - 8571 ВА.

Для бесперебойного питания такой нагрузки подойдет инвертор Tripp Lite модели APSX6048VRNET. Номинальная мощность инвертора составляет 6 кВт, выдерживает пиковую мощность до 12 кВт.

Данный расчет является типовым. Делать такой расчет необходимо исходя из состава оборудования на Вашем объекте или в Вашем жилом доме.

Также Вы можете заказать в нашей компании специальное обследование, с выездом специалиста на Ваш объект для замеров параметров мощности при включенной нагрузке. Это более надежный способ выбора необходимого оборудования.

Время бесперебойного энергоснабжения

После того, как инвертор выбран необходимо определиться с желаемым временем автономной работы. Для этого необходимо знать две величины

  • среднечасовая мощность нагрузки
  • емкость аккумуляторных батарей

Среднечасовую нагрузку необходимо знать, так как максимальная суммарная нагрузка не отражает реальной нагрузки на батарею. Электроприборы включаются и выключаются и в некоторые моменты забираемая из аккумуляторов мощность в разы ниже максимальной.

Метод расчет среднечасовой нагрузки: вычисляем примерную продолжительность работы прибора в сутки с учетом режимов его работы (непрерывный, непрерывный с периодами включения и отключения, редкие включения), например, для холодильника 15 минут в час, это 6 часов в сутки.

Далее время работы умножаем на мощность прибора. Получаем величину потребления электроприбора в сутки (в ВА-часах). И последним этапом делим это значение на 24 часа (для непрерывно работающих приборов, в частности холодильника) либо на 8 часов для приборов, работающих только в активное время суток, например, телевизор.

Емкость батарей

Рекомендуется комплектация инверторов специализированными (необслуживаемыми) аккумуляторами 12 В на 200 Ач.

Одна 12 В батарея 200 Ач содержит в себе энергию в объеме 2 кВтч. Таким образом, если мы будем разряжать его нагрузкой 400 Вт, то теоретически ее должно хватить на 5 часов автономной работы.

В общем случае, для приблизительной оценки, рекомендуется ориентироваться на номинал инвертора и размер батарей, указанных в таблице ниже.

Мощность нагрузки дома Мощность инвертора Напряжение инвертора Количество АКБ 12В-200 Ач Энергия батарей, кВтч Время работы, часов
1,0 кВт 2,0 кВт 12 и 24 2 4,0 4
2,0 кВт 3,0 кВт 24 и 48 4 8,0 4
3,0 кВт 3,5 кВт 48 8 16,0 5
4,0 кВт 6,0 кВт 48 8 16,0 4
5,0 кВт 6,0 кВт 48 12 24,0 5

В случае рассматриваемого выше пример подбора инвертора среднечасовая мощность нагрузки равна 1192 ВА, емкость аккумуляторной батареи 16 кВАч. Соответственно ориентировочное время бесперебойного питания составляет 13,4 часа.

В том случае, когда длительные отключения электроэнергии (сутки и более) происходя достаточно часто, целесообразно дополнить имеющуюся систему генератором вместо дальнейшего наращивания емкости аккумуляторной батареи.

Можно создать полностью автоматическую систему резервного энергоснабжения, если дополнить инвертор генератором с автозапуском. В данной схеме инвертор автоматически отдаст команду на запуск генератора, когда батареи разрядятся и отключит генератор после их зарядки.

12v220.ru

Часто задаваемые вопросы об инверторах:

Какие основные характеристики инверторов?

Основные характеристики инвертора, на которые стоит обращать внимание:

  1. 1. Номинальная мощность (в киловаттах) – определяет, какая суммарная мощность нагрузок может постоянно питаться от данного инвертора.
  2. 2. Пиковая мощность (в киловаттах) – определяет, какой максимальный пик мощности может выдержать инвертор во время работы от АКБ. Некоторые приборы, в особенности электродвигатели, компрессоры или насосы имеют стартовую мощность, которая в 2-5 раз выше их номинального потребления.
  3. 3. Форма волны переменного тока при инвертировании из постоянного – характеристика, которая определяет качество инвертора. Качественный инвертор должен иметь гладкую синусоидальную форму волны, идентичную переменному току городской сети.
  4. 4. Сила тока встроенного зарядного устройства (при его наличии) – определяет, какую максимальную емкость АКБ может «прокачать» (зарядить) встроенное ЗУ.
  5. 5. Возможность заряжать различные типы АКБ. Например, герметичные и открытые АКБ имеют существенные отличия в напряжениях различных стадий заряда.
  6. 6. Наличие температурного датчика для корректировки напряжения заряда в зависимости от окружающей температуры. При холоде напряжение заряда должно быть выше, при жаре – наоборот ниже. Если не происходит такая компенсация, то дорогостоящие АКБ могут недозаряжаться или перезаряжаться, что приведет к их преждевременному выходу из строя.
  7. 7. Наличие спящего режима – способность инвертора переходить в экономный режим при отсутствии нагрузок, и «просыпаться» при включении нагрузки. В спящем режиме собственное потребление инвертора в несколько раз ниже, чем в рабочем. Это особенно важно в автономных системах, где данная характеристика может довольно существенным образом повлиять на время автономной работы всей системы.
  8. 8. Наличие встроенного реле переключения – означает, что инвертор может автоматически «подхватить» питание нагрузок при пропадании внешней сети. Инвертор без реле имеет только «выходящую» линию переменного тока, к которой подключаются нагрузки, питаемые от АКБ. Инвертор с реле имеет «входящую» и «выходящую» линии. К входу подключена внешняя сеть, которая транслируется на нагрузки через реле. В момент пропадания внешней сети срабатывает реле и нагрузки переходят на питание от АКБ.

Также при выборе инвертора следует обращать внимание на фактор веса – 1 кВт = 10 кг, то есть инвертор 6 кВт должен весить около 60 кг. Это означает, что такой инвертор имеет хорошие медный транс.

Что значит выходная мощность и пиковая мощность?

Обычно все, что содержит в себе электродвигатель (например холодильник или насос отопления), имеют так называемую «пусковую» мощность, которая может быть значительно выше, чем номинальная мощность инвертора. Пусковая мощность – это та мощность, которая потребуется для запуска прибора. Обычно такая мощность требуется на короткое время до нескольких секунд, после чего прибор переходит в режим обычного потребления (выходная мощность). Пиковая мощность, указанная в характеристиках инвертора, дает представление, сможет ли инвертор запустить подключаемый к нему прибор. Обычно инвертор "переваривает" пиковую пусковую нагрузку в 1.5 раза больше номинала.

Какие лучше использовать аккумуляторные батареи?

Мы рекомендуем использовать профессиональные батареи глубокого цикла, которые имеют целый ряд преимуществ, среди которых главные - это качество и долговечность.

В целом батареи бывают двух типов: глубокого цикла и стартерные. Для систем бесперебойного подходят только батареи глубокого цикла, способные переносить периоды длительной разрядки и зарядки. Ниже будем рассматривать только АКБ глубокого цикла. Мы классифицируем их на следующие типы:

I. «Герметики»

  1. Гелевые (GEL) – с электролитом в гелеобразном состоянии
  2. АГМ (AGM) – самые распространенные герметичные АКБ

II. Открытые (Flooded)

Герметики не требуют сервиса и их можно устанавливать практически в любых помещениях. Их эксплуатационные характеристики несколько слабее: их не рекомендуется разряжать «в пол» и оставлять разряженными долгое время. Среднее количество циклов полного разряда – около 500-600.

Открытые АКБ требуют периодической проверки электролита и долива дистиллята. Устанавливаются только в вентилируемых помещениях. Эти батареи намного более выносливы и могут быть подвержены процессу выравнивания, во время которого они восстанавливаются до их начального состояния. Среднее количество циклов полного разряда может доходить до 1500-2000.

Какой тип батарей использовать? Можно ли использовать автомобильные аккумуляторы?

Портативные инверторы.

Большинство портативных автомобильных инверторов до 500 Вт дадут Вам ток 220 вольт в течение 30-60 минут от автомобильного аккумулятора, даже если автомобиль при этом не работает. Это время зависит от состояния и возраста батареи, а также от потребляемой мощности включаемой аппаратуры 220 вольт. Если Вы используете инвертор при отключенном двигателе автомобиля, имейте в виду, что Ваш аккумулятор разряжается и Вам необходимо включать двигатель для его зарядки каждый час хотя бы на 10 минут.

Инверторы более 500 Вт и стационарные инверторы бесперебойного питания.

Мы рекомендуем использовать батареи глубокого цикла (глубокого разряда), которые могут перенести несколько сотен циклов полного разряда-заряда. Обычные стартерные автомобильные батареи выйдут из строя уже после 10 циклов. Стартерные батареи предназначены для коротких нагрузок во время пуска двигателей, и не подходят для систем резервного питания. Если Вам постоянно нужен мобильный источник 220 в автомобиле для больших и продолжительных нагрузок, приобретите отдельную батарею глубокого цикла, соединив ее с основной батареей или генератором для зарядки. Если такой возможности нет, и Вы хотите обойтись имеющейся автомобильной батареей, то при использовании инвертора оставляйте двигатель работать. Иначе Вы рискуете не завестись.

Сколько будет работать система при отключении внешней сети?

Во-первых, работает нагрузка, а система ее питает.

Чтобы рассчитать, сколько часов вы можете просидеть без внешней сети на инверторной системе, необходимо знать 2 вещи: (1) приблизительная среднечасовая мощность питаемых системой нагрузок и (2) емкость АКБ.

Чем меньше нагрузка и выше емкость установленных аккумуляторов, тем больше запас времени.

Потребление техникиПриборСреднечасовое потреблениеИтого в сумме:1320 Вт/ч
Электрический чайник 2 кВт, кипятящий воду в течение 6 мин, т.е. 1/10 часа (при условии, что он включался только один раз за этот час)200 Вт/ч
Холодильник А-класса70 Вт/ч
Энергосберегающие лампы освещения (каждая по 20 Вт/ч), допустим, всего горит 15 ламп300 Вт/ч
Ворота 1,5 кВт, время открытия и закрытия - 1 минута (2 мин = 1/30 часа)50 Вт/ч
Котел с принудительной горелкой 100 Вт/ч и 4 циркуляционных насоса отопления по 75 Вт/ч каждый400 Вт/ч
Насос скважины 3 кВт, включается 3 раза на 2 мин в течение часа (6 мин = 1/10 часа300 Вт/ч

Теперь рассчитаем суммарную емкость АКБ:

Берем стандартную систему из восьми 12-вольтовых АКБ по 200 Ач каждая: 12 x 200 x 8 = 19200 Вт/ч, умножаем на коэф. потерь ~0.75-0.8 = 15 кВт/ч общей емкости. Это значение делим на среднюю нагрузку в час и получаем длительность автономной работы системы при взятой среднечасовой нагрузке.

В нашем случае время автономной работы домашних приборов до разряда АКБ –примерно 10 часов.

Надо добавить, что при постоянно высоких нагрузках скорость "съедания" энергии из АКБ возрастет. Еще примечание: данный расчет - теоретический и будет скорректирован в зависимости от множества факторов, таких, как возраст АКБ, температура окружающей среды и т.п.

В моем доме 3-фазная сеть, могу ли я поставить 3-фазную систему?

Как правило, на большинстве объектов с 3-фазной «разводкой» можно установить 1-фазную систему без потери в ее функциональных возможностях защитить дом от перебоев. Просто мы группируем самые важные нагрузки на 1 фазу и пропускаем ее через инвертор. Во время «отключки» две другие фазы обесточиваются, а та, что была защищена инвертором, продолжает питать подключенные к ней нагрузки.

Будет ли работать компьютер на токе модифицированной синусоиды?

Да.

Работа микроволновой печи от инвертора

Характеристика мощности микроволновой печи – это мощность «приготовления блюда». Реальная потребляемая мощность в большинстве случаев гораздо выше, чем указанная на ценнике. Реальная потребляемая мощность обычно указывается на задней стенке печи. Это нужно иметь в виду, если Вы хотите использовать микроволновую печь от инвертора.

Особенности работы телевизора и аудио-аппаратуры

Несмотря на то, что все инверторы являются экранированными приборами для уменьшения помех, некоторые помехи, отражающиеся на качестве теле сигнала, все же могут возникнуть (в особенности при слабом сигнале).

    Вот несколько советов:
  • Прежде всего, убедитесь, что антенна дает нормальный сигнал в обычных условиях, без инвертора. Убедитесь, что кабель антенны надлежащего качества.
  • Попробуйте изменить расположение антенны, телевизора и инвертора относительно друг друга. Убедитесь, что провода постоянного тока максимально удалены от телевизора.
  • Сверните кольцом провода питания телевизора и провода, соединяющие аккумулятор с инвертором.
  • Поставьте фильтр на провод питания телевизора.

Некоторая недорогая аудио аппаратура может слегка «фонить» при работе от инвертора. Решение этой проблемы только в покупке более качественной аппаратуры.

andys.ru

Сколько киловатт потребляет сварочный аппарат ресанта 220

Главная » Статьи » Сколько киловатт потребляет сварочный аппарат ресанта 220

Вычисление потребляемой мощности сварочного инвертора

Оглавление: [скрыть]

  • Типы сварочных инверторов
  • Устройство инвертора
  • Что нужно знать?
  • Вычисление мощности
  • Подбираем электроды

Потребляемая мощность сварочного инвертора довольно просто вычислить по нехитрой формуле. Для понимания всех нюансов, связанных с работой сварочника, и аспектов вычисления его мощности нужно прояснить несколько моментов, которые необходимо знать всем, кто занимается сваркой. И неважно где вы проводите сварочные работы, у себя дома, в гараже, на даче или в профессиональном коллективе большого цеха или завода.

Типы сварочных инверторов

Аппараты инверторного типа делятся на три категории. Бытовые инверторы рассчитаны на небольшую продолжительность включения и работу от однофазной сети переменного тока 220 В. Это означает, что работать таким аппаратом на предельных мощностях можно лишь непродолжительное время — минут 20-30, давая ему отдых, равный этому времени либо превышающий его на порядок. Полупрофессиональные аппараты позволяют увеличивать время работы от 5 до 8 часов без перерыва. Для полупрофессиональных инверторов время отдыха снижено благодаря особенностям конструкции. Профессиональные инверторы рассчитаны на потребление тока 220/380 В зачастую от трехфазной сети электрического тока.

Современные типы сварочных аппаратов.

Бытовые, полупрофессиональные и некоторые профессиональные сварочные агрегаты бывают рассчитаны на работу от сети 220 В. Однако следует помнить, что для бытовых электросетей ток максимальной нагрузки не может превышать 160 А. Потребляемая мощность всей фурнитуры, такой как розетки, штепсельные вилки и силовые автоматы не рассчитана на превышение этого порога.

Поэтому подключение инверторного сварочного аппарата с более высокими показателями либо спровоцирует срабатывание автоматов, либо вызовет выгорание контакта на стыке вилка-розетка, либо что самое опасное, приведет к выгоранию электрической проводки. Это противоречит всем правилам техники безопасности. Так что запитывая профессиональный агрегат от бытовой электросети для работы со сварочным током более 160 А, будьте готовы к проблемам. Но лучше этого не допускать.

Вернуться к оглавлению

Устройство сварочного инвертора таково, что вначале переменное напряжение 220 В с частотой 50 Гц преобразуется в постоянное, а после того в переменное высокочастотное напряжение с рабочим показателем частоты колебания до 200 Гц. После этого напряжение вновь преобразуется в постоянное и подается на сварочную дугу. Контроль качества дуги происходит автоматически, с помощью микропроцессорной начинки блока управления инвертора. Залипания электрода, такие частые при сварке посредством трансформатора, практически сходят на нет.

Схема внутреннего устройства инвертора.

При коротких замыканиях длительностью менее 0,5 секунды управляющий блок генерирует последовательность коротких по времени, но очень мощных импульсов тока. Это приводит к разрушению возникающих перемычек из жидкого металла. При замыкании длительностью 0,5 секунды инвертор попросту отключается, не примораживая электрод и не перегревая цепи агрегата. Это устройство является базовым для всех типов инверторов и отличает их от трансформаторов и выпрямителей на базе диодного моста.

Самое главное свойство сварочного инвертора — это потребление энергии. Неважно, какова потребляемая мощность аппарата инверторного типа, она практически полностью расходуется на сварку. Отсюда можно сделать вывод, что коэффициент полезного действия инверторного агрегата очень высок. От 85 до 95%.

Вернуться к оглавлению

Перед тем как начать подсчет потребляемой мощности инверторного сварочного аппарата, нужно узнать следующее:

  1. Диапазон входного напряжения.
  2. Диапазон сварочного тока.
  3. Напряжение сварочной дуги.
  4. Коэффициент полезного действия конкретной модели сварочного аппарата.
  5. Продолжительность включения.
  6. Коэффициент мощности конкретной модели.

Характеристики инвертора

Диапазон сварочного тока нужен для того, чтобы узнать при каких характеристиках сети электрического тока нам придется работать. Наверняка ни для кого не является тайной, что часто в наших электросетях не наблюдается номинального напряжения 220 В. Часто оно едва дотягивает до 200 В. Следует запомнить: просадка напряжения при подключении сварочного инвертора бытового типа составляет 5-10% от общего номинала сети. Потому лучшие показатели мощности будут у таких инверторов, которые рассчитаны на напряжение питания от 150-170 В и до 220-250 В.

Диапазон сварочного тока дает нам значения максимального и минимального уровня, мощность аппарата напрямую зависит от этих параметров. Для бытовых инверторов эти показатели в нижней границе разнятся от 10 до 50 А, а в верхней 100-160 А. Напряжение выходного тока, оно же может называться напряжением сварочной дуги, колеблется для недорогих бытовых моделей от 20 до 30 В. Коэффициент полезного действия у инверторов с максимальным показателем выходного тока160 А, как правило, редко превышает 0,85%. Высокий КПД сварочного агрегата напрямую зависит от продолжительности включения.

Вернуться к оглавлению

Продолжительность включения — это характеристика, которая показывает, насколько качественный аппарат вы собираетесь использовать. Обычно это процентный показатель времени непрерывной работы инвертора относительно общего времени его использования. Показатель на уровне 50% скажет о том, что при работе 2,5 минуты аппарат должен отдыхать 2,5 минуты. Чем ниже показатель, тем дольше должны отдыхать цепи и тем быстрее сработает автоматическое реле отключения при перегреве.

Напротив, высокий процент покажет, что аппарат можно использовать достаточно долго, прерываясь лишь на замену электродов и проверку сварочного шва.

Схема работы сварочного инвертора.

Процент мощности вычисляется путем деления времени непрерывной работы на сумму времени непрерывной работы и времени паузы до следующего включения аппарата. Результат умножается на 100. Например, аппарат исправно работал 3 минуты, пока не сработала защита от перегрева, затем он находился в покое 2 минуты, после чего вновь был готов к работе:

3 мин / (2 мин + 3 мин) х 100 = 60

Коэффициент мощности для бытовых или полупрофессиональных сварочных аппаратов инверторного типа редко превышает порог 0,6-0,7. Это необходимо просто запомнить.

Все нужные для вычисления значения легко можно найти в технической документации для данного устройства, на сайте производителя либо на кожухе самого сварочного аппарата.

Представим, что для примера мы имеем сварочный аппарат, питающийся от сети переменного тока 160-220 В, имеющий максимальное значение тока 160 А при максимальном напряжении сварочной дуги в 23 В. КПД этой модели инвертора 0,89, а показатель ПВ, продолжительность включения, составляет 60%.

Теперь вычисляем максимальную потребляемую мощность инвертора с приведенными выше параметрами. Для этого сначала умножаем максимальное значение выходной силы тока на максимальное выходное напряжение. Получившийся результат разделим на значение КПД аппарата.

http://moiinstrumenty.ru/www.youtube.com/watch?v=UX81XigBgBY

160 А х 23 В / 0,89 = 4135 Ватт

4,1 кВт — это мощность, которую аппарат потребляет непосредственно при сварке. Средняя мощность вычисляется путем умножения значения максимальной мощности на показатель продолжительности включения:

4135 Ватт х 0,6 = 2481

Средняя мощность инвертора является наиболее актуальным показателем, потому что сварка обычно не происходит непрерывно на протяжении многих часов или дней. Случаются паузы, когда сварщику требуется сменить электрод или подготовить детали к последующей обработке. Нередко сварочные работы можно провести на более низком показателе силы тока, в этом случае снизится и общая мощность, потребляемая инвертором. Подставляем в первую формулу значения, которые можно выставить на консоли сварочного агрегата и находим нужные параметры мощности.

Вернуться к оглавлению

Таблица разновидностей электродов.

У начинающих сварщиков нередко возникает вопрос, электроды каких диаметров использовать при определенных параметрах выходной силы тока и толщине металла?

  1. При толщине металла 1-4 мм используют электроды диаметром до 2 мм. Сила тока, выставляемого на выходе, должна подбираться оптимально в диапазоне от 20 до 90 А.
  2. При толщине металла 5-7 мм используют электроды 3 мм в диаметре. Сила тока выставляется в диапазоне 90-130 А.
  3. Если металл имеет толщину 8-12 мм, используют электроды 4 мм. Сила тока в диапазоне 140-180 А.
  4. Металл толщиной 12-16 мм сваривается электродами 5 мм в диаметре при силе тока 180-220 А.
  5. Металл толщиной свыше 15 мм должен подвергаться воздействию электродов, начиная от 6 мм при силе тока от 220 А на выходе инвертора.

Металл толщиной более 15 мм лучше подвергать сварке с помощью газового сварочного аппарата.

http://moiinstrumenty.ru/www.youtube.com/watch?v=2Q6BEjCp_t8

Использование электросварки может оказаться в данном случае нерентабельной и высокозатратной.

moiinstrumenty.ru

Какой должна быть мощность сварочного аппарата?

Оглавление: [скрыть]

  • Сварочный трансформатор какой мощности выбрать?
  • Мощность сварочного выпрямителя
  • Сварочный инвертор: выбор мощности
  • Сварочный полуавтомат какой мощности приобрести?
  • Сварочный комбинированный агрегат

Мощность сварочного аппарата обозначает, какую силу тока сможет выдать устройство, с какой толщиной металла можно будет работать в дальнейшем. Профессиональные аппараты могут выдать от 300 А, но обычные бытовые дают меньше, они рассчитаны на работу при 200-250 А. Если аппарат нужен для проведения разового ремонта, мелких строительных работ, то лучше всего брать обычные бытовые.

Мощность сварочного аппарата обозначает, какую силу тока показывает устройство и с какой толщиной металла разрешается работать в будущем.

В паспорте производители обычно указывают только максимальную потребляемую мощность, т. е. пиковые нагрузки и иные показатели. Именно такой параметр позволяет определить, хватит ли мощности электрической сети для работы оборудования. Нельзя забывать и о том, что при понижении напряжения в сети многие устройства также в состоянии работать, но производительность их ниже.

Сварочный трансформатор какой мощности выбрать?

Сварочный трансформатор представляет собой оборудование, которое может преобразовать ток, необходимый для работы устройства. Механизмы эти недорогие, надежные. Используется аппарат для того, чтобы выполнять сварку низколегированных сталей, для этого применяются плавящиеся электроды. При выборе устройства для сварки надо тщательно подходить к определению мощности.

Схема преобразования электрической энергии в сварочном аппарате.

Следует учитывать максимальные значения и некоторый запас, так как часто при включении этот предел бывает превышен. Например, если агрегат будет применяться для работы с однофазной сетью, то превысить значение тока в 200 А вряд ли получится, об этом нельзя забывать. На деле это оборачивается невозможностью использования аппарата для сварки.

При выборе надо помнить, что трансформатор изнашивается. Чем больше значение, тем выше нагрев и износ. Если не требуются сложные и длительные работы, то и высокие значения мощности совершенно не нужны. Предпочтение рекомендуется отдавать тому оборудованию, которое рассчитано на 120-130 А — это оптимальная золотая середина.

Вернуться к оглавлению

Сварочный выпрямитель представляет собой разновидность трансформатора, который позволяет преобразовать переменный ток в необходимый для работы постоянный. В отличие от обычного трансформатора сварочный выпрямитель обеспечивает стабильное горение, качество его выше. Есть возможность варить цветные металлы и тонкие детали, при этом большой опыт не требуется.

Схема устройства сварочного аппарата.

Определить, какую мощность должен потреблять выпрямитель, чтобы обеспечить правильную и качественную работу, несложно. Для этого необходимо знать, что стандартное напряжение дуги устройства равно 24 В. Этот показатель умножается на значение сварочного тока, т. е. на 160 А. Цифра, которая будет получена, и является мощностью оборудования на дуге. Потребляемая мощность от рабочей электрической сети определяется иначе. Необходимо полученный ранее результат разделить на КПД (обычно за него принимают 0,65-0,7). Это и будет показатель максимального рабочего тока.

При покупке значение рекомендуется всегда проверять с заявленным, так как производители порой завышают показатели, чтобы продать устройство. В реальности получается не самая хорошая ситуация, когда при выполнении работ даже не на максимальных значениях наблюдается сильный перегрев, мощность резко падает.

Вернуться к оглавлению

Выбор инверторного сварочного аппарата проводится в соответствии с таким параметром, как мощность. Учитывается номинальный ток, при котором устройство будет бесперебойно работать без перегрева, даже в том случае, если использование будет интенсивным. Перегрев не наступит даже при повторно-кратковременном режиме, т. е. при максимальном значении тока.

Управление сварочным аппаратом.

Например, при использовании электрода на 3 мм рабочий ток будет составлять 120 А. Такие условия позволят сваривать детали на 3-4 мм толщиной. Значит, при выборе следует учитывать мощность, когда инвертор сможет работать с номинальным током в 160-180 А, но при этом имея запас в 30-50%. Почему именно такие значения? Работать на максимальных значениях не рекомендуется, так как это приводит к перегреву, инвертор выходит из строя. При снижении напряжения электрической питающей сети до 170-180 В мощность оборудования падает, сварочный ток снижается до минимальной отметки. Запас необходим на тот случай, когда нагрузка будет дана большая.

Запас требуется и в том случае, когда применяются длинные кабели от 5 м. Если не соблюдать запас, то характеристики сварочного аппарата снизятся ниже номинального рабочего уровня. Особенно важны такие условия, когда применяются кабели от 15 м. При выборе инвертора следует учитывать, что производители обычно показатели завышают, на деле ток находится на более низком значении. К чему это приводит? Если характеристики подобраны неправильно, устройство перегревается во время работы и выходит из строя, что влечет за собой лишние финансовые расходы.

Вернуться к оглавлению

Функциональная схема источника питания инверторного сварочного аппарата.

Современный полуавтомат позволяет выполнять даже самые сложные работы, например, произвести качественную сварку листового железа, цветных металлов. Параметры этого типа устройства таковы, что оно становится незаменимым при сварке тонкослойных металлов. Именно его применяют в автомастерских, где точность велика. Чтобы получить необходимую мощность, к оборудованию можно подключать газовые баллоны, но это не обязательно. Есть возможность применять порошковую проволоку. Некоторые модели совмещают 2 типа оборудования — сварочные генераторы и полуавтоматы.

При выборе оборудования на мощность стоит обращать внимание.

Нельзя забывать и о том, какой должна быть потребляемая мощность в момент включения.

Она всегда больше, чем та, которая используется при нормальной работе устройства. Обычно стоимость механизмов с малым уровнем мощности намного меньше. Но именно при помощи данного аппарата можно варить даже самые тонкие детали, а это важно при выполнении высокоточных работ.

Вернуться к оглавлению

Комбинированный сварочный аппарат представляет собой агрегат с функциями рабочего выпрямителя или трансформатора, объединенными с дизельным генератором. Такое оборудование может давать высокочастотный либо постоянный ток, оно отлично подходит для сварочных работ различного типа. Такой агрегат позволяет работать при отсутствии электроэнергии. Например, при строительстве дома на загородном участке, когда электросеть еще не подведена.

Схемы подключения сварочных аппаратов.

Кроме дизельного применяются бензиновые генераторы. Характеристики этого устройства могут несколько отличаться в зависимости от производителя и модели, но в целом они остаются на одном уровне. При выборе агрегата для сварки необходимо учесть, что они в основном применяются на строительных площадках и для проведения ремонтных работ в условиях, когда постоянной электрической сети нет. В сравнении с профессиональными они могут быть не такими мощными.

Характеристики оборудования:

  1. Частота находится на уровне 50 Гц.
  2. Работать аппарат может при переменном напряжении в 110 В, 220 В, 230 В, 240 В (необходимо внимательно ознакомиться с инструкцией перед приобретением).
  3. Номинальная мощность равна 4,2 Вт, а максимальная потребляемая во время работы — 4,8 кВт.
  4. Мощность оборудования имеет коэффициент равный 1.
  5. При холостом ходе напряжение равно 65 В.
  6. Напряжение дуги во время сварки равно 25-30 В.
  7. Сварочный ток агрегата равен 180 А.
  8. Рабочий диапазон тока для бесперебойной работы составляет 50-180 А.

http://moiinstrumenty.ru/youtu.be/UX81XigBgBY

Мощность для сварочного инвертора является важным показателем. Она может быть различной, зависит от типа устройства, его предназначения. Во время выбора следует ознакомиться с параметрами разных сварочных агрегатов, чтобы приобрести максимально подходящий вариант.

moiinstrumenty.ru

Ресанта САИ 250 ПРОФ – это инвертор с оптимальным потреблением энергии

Инвертор сварочный Ресанта САИ 250 ПРОФ является новинкой 2012 года модельного ряда сварочных инверторов и входит в линейку САИ-ПРОФ. Эту линейку отличает более эффективное использование входного напряжения (повышен КПД и расширен диапазон входного напряжения от 100 до 260В).

Следует также отметить возможность использования электрогенераторов с мощностью на 15 процентов ниже, чем для обычных инверторов сварочных (для данной модели достаточно генератора с мощностью на выходе в 6,5кВт). Это все обеспечивается корректором коэффициента мощности (функция PFC).

Использование сварочного инвертора Ресанта САИ 250 ПРОФ позволяет обеспечить оптимальное потребление сетевого тока по синусоиде, чем уменьшается проседание напряжения сети, а также меньше создается электромагнитных помех и достигается экономия электроэнергии на 30 процентов. Принцип работы основан на преобразовании напряжения сети 220В частотой 50Гц в постоянное напряжение, с последующим преобразованием постоянного переменное напряжение высокой частоты.

Особенности сварочного инвертора

  • Обеспечивает работу от сети 220В с обычным электродом до 5мм.
  • На переднюю панель выведены два регулятора, один регулирует плавно сварочный ток, второй регулирует «форсаж» сварочной дуги, повышая ее устойчивость.
  • Имеет цифровое табло, отображающее величину сварочного тока.
  • Обладает широким диапазоном входного напряжения, от 100 до 260В.
  • Аппарат оснащен функциями анти залипания и горячего старта.
  • При изготовлении применены IGBT-транзисторы.
  • Принудительное туннельное охлаждение.
  • Класс защиты IP21.

Технические характеристики Ресанта САИ 250 ПРОФ

  • Напряжение – 220В.
  • Мощность генератора – 6,5кВт.
  • Напряжение холостого хода — 65В.
  • Продолжительность нагрузки — 70%, 250A
  • Максимальный диаметр применяемых электродов – 5,0мм.
  • Минимальный диаметр применяемых электродов – 1,6мм.
  • Максимальный сварочный ток – 250А.
  • Минимальный сварочный ток – 10А.
  • Потребляемый ток — 38А
  • Напряжение дуги 28В.
  • Масса – 6,0кг.

Ресанта САИ 250 ПРОФ комплектуется кабелем (2м) с электродержателем и кабелем (1,5м) с зажимом массы.

kovka-svarka.net

Сварочные аппараты «Ресанта» – какой выбрать

«Ресанта» – чрезвычайно популярный в России бренд, под которым производится сварочное оборудование. Продукция представлена в четырех линейках и включает в себя инверторные и полуавтоматические модели, а также плазменные резаки.

Разновидности сварочных аппаратов «Ресанта»

Разработано четыре серии сварочных аппаратов «Ресанта»: САИ-220К, САИ-220, САИ-220ПН, САИ-250ПРОФ. Их объединяет ряд полезных функций: защита от перегрева, антизалипание электродов, «горячий» старт, форсаж дуги. Первое отличие заключается в габаритах и весе – у аппаратов серии САИ-220К они наименьшие. Второе – в диапазоне входного напряжения. У первых трех линеек он составляет 140–260 В, у четвертой – 100–260 В. Третье отличие заключается в дополнительном оснащении: у представителей линеек САИ-220ПН и САИ-250ПРОФ присутствует цифровой дисплей и сварочный кабель в комплекте.

Рейтинг популярных моделей «Ресанта»

«Ресанта» САИ-250К – компактная модель инвертора в 4,6-килограммовом корпусе. Подходит для профессионального применения. Поддерживает электроды диаметром от 2 до 6 мм. Потребляемая мощность – 7,7 кВт, минимальный ток – 10 А. В работе обеспечивает аккуратный ровный шов. Благодаря своему малому весу и скромным размерам аппарат очень мобилен, что делает его пригодным для высотных сварочных работ. Принудительная система вентиляции  позволяет использовать инвертор на производствах с высоким уровнем загрязнения.

«Ресанта» САИ-220 – высокопроизводительный инверторный аппарат для бытового и полупрофессионального применения. Заключен в легкий ударопрочный корпус и оснащен наплечным ремнем для удобства переноски. Предназначен для ручной дуговой сварки постоянного тока штучными электродами 1,6–5 мм со спецпокрытием. Потребляемая мощность – 6,6 кВт, минимальный ток – 10 А. Подходит для черных металлов, нержавеющей стали и меди в листах от 0,3 мм. Принудительную вентиляцию, как и в предыдущей модели, обеспечивают три мощных вентилятора.

«Ресанта» САИ-160К – инвертор, предназначенный для работы от бытовой сети 220 В. Небольшой трансформатор и транзисторы IGBT-типа делают его корпус легким (3,4 кг) и компактным, для переноски с места на место используется наплечный ремень. В паре с аппаратом можно использовать электроды переменного или постоянного тока диаметром от 1,6 до 4 мм. Потребляемая в работе мощность – 4,8 Вт, минимальный ток – 10 А. Особенностью этой модели является большое значение параметра напряжения холостого хода (80 В). Это позволяет быстро разжигать электрическую дугу и делает инвертор пригодным для работы с цветными металлами.

«Ресанта» САИПА-165 – полуавтоматический сварочный аппарат-инвертор. Использует для сварки специальную проволоку диаметром 0,6–0,9 мм. Ее подача начинается автоматически после нажатия на кнопку, расположенную на ручке корпуса (вес 11,5 кг). В качестве замены флюсу используется защитная газовая среда из баллона. Потребляемая мощность – 4,8 кВт, минимальный ток – 20 А. В модели есть система охлаждения, которая поддерживает температуру на заданном уровне, а также принудительная вентиляция. Аппарат отличает плавная регулировка параметров работы и отсутствие дополнительной нагрузки на электросеть в момент розжига.

i-stab.ru

www.samsvar.ru

Выбор инвертора. Как правильно выбрать инвертор?

Инвертор - это специализированное устройство для частотного регулирования и преобразования постоянного тока в переменный, которое осуществляется встроенными в прибор микросхемами.

Ликбез для потребителя

Выбор инвертора зависит от многих критерий:

  • необходимого периода автономной работы;
  • специализации применения: от обеспечения функционирования насосных станций до бесперебойной работы компьютера;
  • количества и схемы подключаемых приборов.

Принцип работы заключается в мгновенном реагировании на выключение постоянного энергопитания и плавном включении подачи электричества от аккумуляторных батарей. Естественно, чем выше емкость устройства и мощность частотного регулятора, тем продолжительнее будет обеспечение автономным питанием.

При выборе инвертора следует опираться на установленную классификацию по форме напряжения на выходе устройства:

  • Квадратичная;
  • Трапециевидная;
  • Синусоидальная.

При несоответствии выходного напряжения к техническим особенностям подключаемых приборов, особенно это касается оборудования с магнитными сердечниками, возможна деструкция систем.

Также выбор инвертора должен быть основан на соблюдении зависимостей от установленной фазности использования. Подключение может быть произведено на одну, две или три фазы питания.

Расчет инвертора:

При продаже инвертора консультанты магазина обязательно должны проинформировать вас о расчетной мощности прибора.

Расчет инвертора базируется на соотношении его свойств (входного напряжения, напряжения на выходе, номинального выходного тока) к паспортным частотным параметрам (IGBT) с учетом критично допустимой температуры. В результате расчета инвертора определяются пороговые значения напряжения, средняя мощность, помехоустойчивость.

Для адекватной работы электроприборов необходимо выбирать частотный преобразователь, мощность которого превышает общую мощность подключаемого к нему оборудования, не менее чем на 25%.

Общий порядок действий при подключении электричества

  • Расчет нагрузки на дом
  • Подача заявки в региональный центр присоединений к центральным сетям
  • Рассмотрение вариантов независимого энергоснабжения, расчет различных систем
  • Выбор системы по основным характеристикам: стоимость системы, цена 1 кВт, надежность, долговечность, простота обслуживания

Наверняка, Вы сами сможете справиться с этой задачей, тем более, что Интернет наводнен справочными данными. Но если, не желаете тратить на это время и вдаваться в технические детали, решение многих вопросов можно доверить нам:

  • - проконсультируем о возможности применения различных систем;
  • - проведем энергоаудит;
  • - рассчитаем различные варианты проектов;
  • - поможем найти оптимальное решение

Как правильно посчитать нагрузку на дом? Какие автономные системы Вы посоветуете? Рассчитать нагрузку дома достаточно просто. Вам необходимо просуммировать мощности всех потребителей и умножить на коэффициент разновременности. Коэффициент разновременности как правило равен 0,6. Но если у Вас присутствует большое количество мощных, но редко используемых (1-2 раза в неделю) потребителей, то коэффициент может быть меньше.

Также можно просуммировать мощности одновременно работающих электроприборов, например: холодильник (всегда присутствует в расчетах, т.к. нельзя прогнозировать момент его включения), автоматика котла и теплоснабжающего оборудования, телевизор(ы), компьютер, освещение и т.д. [все зависит от количества жильцов, чем их больше, тем больше приборов одновременно может включаться]. После сложения мощностей (у Вас никогда не получится, что все приборы одновременно работают, только если у Вас очень большая семья) смело можете полученную сумму сократить процентов на 10-20, т.к. обязательно перезаложитесь при подсчете. Это и будет искомая величина.

Автономные системы, работающие круглогодично, обязательно будут включать в себя дизель-генератор (для зимнего периода), инвертор (или блок бесперебойного питания), зарядное устройство и аккумуляторы. По Вашему желанию и, исходя из экономических и энергетических соображений целесообразности развития, система может быть расширена за счет ветроэнергетических установок и солнечных батарей.

Можно ли сэкономить на стоимости энергоустановки? Для того чтобы понизить стоимость энергоустановки, надо понизить энергопотребление. Можно дать следующие советы для понижения энергопотребления:

  • Использовать экономичные галогеновые электролампы. При потреблении 12Вт, данные лампы соответствует по освещенности лампам накаливания, потребляющим 100Вт.
  • Использовать современную транзисторную электротехнику с малым энергопотреблением.
  • Сократить до минимума время использования мощных бытовых электроприборов (печь СВЧ, утюг, электропечь, электронагреватель, фен, электрочайник, кофеварка, тостер, стиральная машина с подогревом воды, ручной электроинструмент и т.п.)
  • Отказаться от использования электропечей при приготовлении пищи, отопления и электрических систем получения горячей воды, а использовать для этого какое-либо топливо, например дрова, газ, солярку т.п.

Как выбрать инвертор? Существует две группы инверторов, которые различаются по стоимости. Первая группа более дорогих инверторов обеспечивает синусоидальное выходное напряжение. Вторая группа обеспечивает выходное напряжение в виде упрощенного сигнала - квази-синуса, заменяющего синусоиду. Для подавляющего большинства бытовых приборов можно использовать упрощенный сигнал. Синусоида важна только для некоторых телекоммуникационных приборов. 

Выбор инвертора производится исходя из пиковой мощности энергопотребления стандартного напряжения 220В/50Гц. Существует два режима работы инвертора. Первый режим – это режим длительной работы. Данный режим соответствует номинальной мощности инвертора. Второй режим – это режим перегрузки. В данном режиме большинство моделей инверторов в течение нескольких десятков минут (до 30) могут отдавать мощность в 1,5 раза больше, чем номинальная. В течение нескольких секунд большинство моделей инверторов могут отдавать мощность в 2,5-3,5 раза большую, чем номинальная. Сильная кратковременная перегрузка возникает, например, при включении холодильника. Как правило, мощность инвертора примерно равна расчетной мощности ВЭУ.

Как рассчитать минимальную емкость аккумуляторных батарей?При расчете мощности можно использовать следующую формулу: 

  • Суммарную потребляемую мощность (ее можно взять из таблицы) умножить на необходимую длительность автономной работы(ч),и разделить на напряжение (стандартно 12, 24 или 48V). Полученную емкость скорректировать с помощью коэффицентов, учитывающих глубину разряда, температуру окружающей среды, возраст АБ.
  • Примерный расчет суммарной емкости батарей: 
  • Суммарная потребляемая мощность приборов за 1 час работы: 400Вт 
  • Часы автономной работы: 6 
  • Напряжение 12V 
  • Корректирующий коэффициент 1/20%=5 
  • 400*6/12*5=1000Ач 
  • Суммарная емкость 1000Ач или 10 батарей 100Ач*12В (50Ач*24В)

Как рассчитать мощность инвертора? Параметр мощности инвертора будет зависеть от потребляемой мощности приборов и длительности автономной работы. Если будут использоваться только осветительные приборы и телевизор, то можно обойтись инвертором 500-1000 Вт. 

В других случаях надо посчитать суммарную мощность приборов, которые Вы хотите подключить к инвертору.Потребляемая мощность обычно указана на самом приборе или в руководстве по эксплуатации. Рекомендуется использовать инвертор, мощность которого на 20-30% больше рассчитанной Вами мощности. Таблица примерных мощностей. Допустим, что нужная Вам мощность составляет 500 Вт/ч, а длительность автономной работы 10 часов. 

Расчет мощности: 500Вт/ч*10ч*1,2 = 6000Вт

Для пересчета в Вольт-Амперы используется коэффициент 0.6: 6000*0,6=3600ВА Теоретический расчет должен быть скорректирован с учетом таких факторов как возраст АКБ, постоянство высоких нагрузок, температура окружающей среды и т.п.

www.220.kg

2.1. Расчет инвертора напряжения

Исходные данные для расчета всем вариантам заданий содержатся в табл. 2.1. Ниже приведен пример расчета инвертора напряжения по данным:

1. Полная мощность нагрузки по первой гармонике S(1)н = 2500 В·А.

2. Действующее значение напряжения первой гармоники на нагрузке U(1)н = 50 В (инвертор используется для электродуговой сварки листового же­леза).

3. Коэффициент мощности нагрузки по первой гармонике cos φ1 = 0,75.

4. Частота первой гармоники выходного напряжения инвертора f1 = 400 Гц.

5. Источником питания служит сетевой выпрямитель, выполненный по мо­стовой схеме с накопительным конденсатором на выходе. С учётом паде­ния напряжения на элементах выпрямителя Ud = 300 В.

Расчёт инвертора необходимо выполнять после изучения принципи­альной схемы (рис. 2.1) в следующем порядке:

1. Полное сопротивление нагрузки на частоте основной гармоники

(2.4)

2. Активная составляющая сопротивления нагрузки

Rн = Zн · cos φ(l) =1,0 · 0,75 = 0,75 Ом. (2.5)

3. Индуктивное сопротивление нагрузки на основной частоте

Таблица 2.1.

Параметры инвертора.

Номер

варианта

S(1)н, В·А

U(1),В

cos φ(1)

f1, Гц

Ud, В

1

250

80

0,7

200

300

2

240

60

0,7

400

300

3

480

50

0,75

100

500

4

600

90

0,75

50

500

5

1000

110

0,8

100

600

6

1200

100

0,8

200

600

7

200

110

0,75

100

300

8

300

80

0,75

200

300

9

500

90

0,8

400

500

10

700

60

0,7

200

600

Окончание таблицы 2.1.

11

850

100

0,75

100

600

12

100

80

0,8

100

300

13

240

110

0,8

200

300

14

480

100

0,75

200

500

15

600

80

0,7

100

600

16

300

90

0,7

100

300

17

500

100

0,8

400

600

18

300

90

0,75

400

500

19

200

80

0,75

200

300

20

500

90

0,7

400

600

21

700

100

0,75

200

500

22

850

110

0,8

100

600

23

480

90

0,7

200

500

24

240

80

0,7

400

300

25

200

110

0,7

200

300

26

400

100

07

100

300

27

500

80

0,75

200

400

28

700

90

0,75

200

400

29

850

100

0,8

100

600

30

1000

110

0,8

100

600

31

1200

110

0,8

100

600

32

1100

100

0,8

100

600

33

1000

90

0,75

200

400

34

800

80

0,75

200

400

35

500

80

0,7

400

300

36

400

90

0,7

400

300

37

300

90

0,7

400

300

38

240

80

0,75

200

400

39

250

90

0,7

400

400

40

320

100

0,75

200

600

41

400

110

0,8

100

200

42

500

110

0,8

200

200

43

700

100

0,75

200

400

44

1000

90

0,8

100

600

45

1200

80

0,8

100

600

46

800

100

0,75

200

400

47

240

100

0,75

200

400

48

320

80

0,8

200

200

49

400

90

0,8

100

200

50

500

110

0,7

110

100

Xн=2 - π - f - Lн = Zн · sin φ(1) = 1,0 · 0,562 = 0,562 Ом. (2.6)

4. Действующее значение напряжения, приложенного к первичной об­мотке выходного трансформатора,

(2.7)

5. Коэффициент трансформации выходного трансформатора

(2.8)

6. Активное сопротивление нагрузки, приведённое к первичной об­мотке трансформатора,

(2.9)

7. Индуктивное сопротивление нагрузки, приведённое к первичной об­мотке трансформатора,

(2.10)

8. Параметр нагрузки

. (2.11)

9. Базисный ток

(2.12)

10. Максимальное значение тока нагрузки, приведённое к первичной обмотке трансформатора,

(2.13)

11. Среднее значение тока, потребляемое от источника питания,

(2.14)

Полученное значение Id, а также величина Ud используются при расчёте выпрямителя, питающего инвертор.

12. Угол и время проводимости обратного диода

(2.15)

(2.16)

13. Среднее значение тока через тиристор

(2.17)

14. Среднее значение тока через обратный диод

(2.18)

15. Эффективное значение тока через тиристор

(2.19)

16. Эффективное значение тока через обратный диод

(2.20)

17. Максимальное обратное напряжение на тиристорах и диодах

На основании данных расчёта из справочника [8, 11] выбираем:

а) тиристор типа ТН-10-10 со следующими параметрами:

допустимый средний ток Iа доп = 10 А,

допустимое обратное напряжение Uобр.доп = 1000 В,

отпирающий ток управления Iу = 0,8 А,

отпирающее напряжение управления Uу = 2 В,

критическая скорость нарастания прямого тока ,

критическая скорость нарастания прямого напряжения: ,

время выключения te = 20 мкс;

допустимая частота выпрямителя fmax = 1,2 кГц.

б) диоды обратного выпрямителя типа КД 202 Л со следующими параметрами:

Iа доп = 10 А,

Uобр.доп = 1000 В,

допустимая частота выпрямителя fmax = 1,2 кГц.

18. Коэффициент формы тока через тиристор

(2.21)

19. Мощность статических потерь

(2.22)

где U0 – пороговое напряжение, U0 = 2,33 В; Rд – динамическое сопротивление тиристора в открытом состоянии, определяемое по его статической вольтам­перной характеристике.

Для выбранного тиристора по характеристике находим U0 = 2,33 В, Rд = 0,0157 Ом.

20. Коэффициент формы тока через обратный диод

(2.23)

21. Мощность статических потерь в диоде

(2.24)

Для выбранного диода U0 = 0,78 В, динамическое сопротивление диода Rд = 0,043 Ом. Значение мощности потерь в тиристоре и диоде используются для расчёта площади теплоотводящего радиатора.

22. Действующее значение напряжения на первичной обмотке выход­ного трансформатора

U1 = Ud = 270 В.

23. Действующее значение напряжения на нагрузке

Uн = U1n = 270·0,18 = 48,65 В. (2.25)

24. Действующее значение тока в первичной обмотке трансформатора

(2.26)

25. Действующее значение тока в нагрузке

(2.27)

26. Расчётная мощность первичной обмотки трансформатора

S1=U1·I1= 270·8,86 = 2594 В·А. (2.28)

27. Расчётная мощность вторичной обмотки трансформатора

S2=·I2= 50·49,2 = 2460 В·А. (2.29)

28. Типовая мощность трансформатора

29. Определяем параметры коммутирующих элементов исходя из ус­ло­вия минимума энергии, накопленной в контуре коммутации [11]:

(2.30)

(2.31)

где tc= (1,2...2)·tв. Принимаем tc= 25 мкс.

30. Максимальное напряжение на коммутирующем конденсаторе в ин­тер­вале возврата энергии из контура коммутации

(2.32)

где Квз – возвратный коэффициент.

В соответствии с рекомендациями, приведёнными в [1], Квз выбирают в пределах 0,1 ... 0,2. Примем Квз = 0,1.

31. Амплитуда первой гармоники напряжения на конденсаторе

(2.33)

В качестве коммутирующего конденсатора используем конденсаторы типа МБГИ, для которых в соответствии с ТУ [8] допустимая амплитуда пе­ременной составляющей на частоте 1000 Гц составляет 20 % от рабочего на­пряжения. Следовательно, рабочее напряжение кон­денсатора должно быть

(2.34)

Для получения нужной емкости и рабочего напряжения конденсаторы выбранного типа можно включить параллельно и последовательно. Вклю­чаем последовательно 3 конденсатора по 10 мкФ на рабочее напряжение Uраб = 750 В.

32. Постоянная составляющая токов в дросселях L1 и L2

33. Скорость нарастания прямого напряжения на тиристоре

(2.35)

34. Скорость нарастания прямого тока при отпирании тиристора

(2.36)

Полученные значения не должны превышать величины, приводимые в паспорте на выбранный тиристор.

35. Постоянная времени цепи нагрузки

(2.37)

36. Напряжение на конденсаторе

37. Частота основной гармоники пульсаций на конденсаторе, обусловленных работой инвертора

В качестве накопительного конденсатора выбираем конденсатор типа К5О-ЗБ с рабочим напряжением 450 В. В соответствии с ТУ на данный конденсатор допустимая амплитуда переменной составляющей на частоте 800 Гц составляет 1,5 % от рабочего напряжения [11]

Uп.доп = 0,015 · 450 = 6,75 В.

38. Емкость накопительного конденсатора

(2.38)

Принимаем емкость конденсатора С1 = 120 мкФ.

Рассмотренная методика расчета схемы мостового инвертора напряжения на тиристорах пригодна и для расчета схемы на транзисторах. Параметры отечественных биполярных и полевых транзисторов большой мощности приведены в справочниках [8, 11], а параметры импортных полевых и IGBT транзисторов в таблицах П.1, П.2, П.3 приложения.

studfiles.net

Мощность инверторов МАП Энергия

Инверторы МАП – популярные и надёжные инверторы отечественного производства. Как правильно определится с выбором мощности?

В названии конкретной модели инвертора мы видим указание на мощность и напряжение по постоянному току, например МАП “Энергия” 9.0/48 (9кВт, 48В – DC), но в характеристиках фигурируют понятия “номинальная”, “максимальная” и “пиковая” мощность. Давайте разберемся в этих значениях.

I. Серия МАП PRO

При трансляции сети инвертор способен пропускать через себя свою максимальную мощность в течение всего необходимого времени, и именно эта мощность “зашита” в названии модели. Так, например, для МАП 6.0/48 максимальная мощность трансляции – 6кВт, что оптимально при установке инвертора на фазу, которая ограничена на току автоматом в 25А (25А*220В=5.5кВт). Если на вводе стоит автомат 40А – МАП 9.0/48 и т.д.

Установка инвертора меньшей мощности, чем позволено вводным автоматом, приведет к добровольному самоограничению, т.к. инвертор при превышении максимальной мощности уйдет в перегрузку и аварийно отключит нагрузку.

Пиковая нагрузка на инвертор составляет порядка 133% от максимальной мощности и может быть продержана  в течение ок. 10сек. до отключения инвертором нагрузки (Для 9.0/48 пик до 12кВт).

При генерации от аккумуляторов (в работе инвертор DC-AC) у нас дополнительно появляется понятие номинальной мощности.  Это значение составляет порядка 66% от максимального значения. Т.е. для инвертора 9.0/48 – это 6кВт. Номинальную нагрузку при работе от АКБ МАП способен держать в течение того времени,  которое позволяет батарейный банк (см. калькулятор автономии). При нагрузке свыше номинала, но менее максимальной запускается таймер обратного отсчета на 20 минут. Если в течение этого времени мощность потребления не опустилась в пределы номинала – нагрузку будет “погашена”.

Таким образом, например, для МАП “Энергия” PRO 9.0/48:

При работе от сети:

  • Время при нагрузке до 9 кВт – ∞
  • 9 – 12кВт – 10сек
  • Свыше 12кВт – моментальное отключение

При работе от АКБ:

  • Время при нагрузке до 6 кВт – ограничено емкостью батарейного банка
  • 6 – 9кВт – 20 минут
  • 9 – 12кВт – 10 сек.
  • Свыше 12кВт – моментальное отключение

Нагрузка на МАП

II. Серия МАП Hibrid и Dominator

Эти инверторы базируются на версии PRO, но отличаются добавленным функционалом, один из основных – это подкачка мощности к ограниченной мощности сети. Если с номинальной, максимальной и пиковой нагрузкой ситуация аналогична PRO, то возникает вопрос – какую мощность способен подкачать гибрид? Отвечаем – до 50% от максимальной мощности (а в идеальных условиях – высокое напряжение на АКБ, в сети напряжение не выше 220 В и синус правильной формы – до 66%, т.е. до номинала прибора). Т.е. для МАП Hibrid 9.0/48 – это до ~ 4,5кВт.

Предположим, что у нас фаза ограничена автоматом в 25А (5,5кВт), превышения потребления приведут к отключению питающей линии. При установке Hibrid 9.0, мы сможем уже держать нагрузку до 5,5+4,5=~10кВт, то время, которое способны держать аккумуляторы на нагрузке 4,5 кВт.

tok-shop.ru