Продукция | Кабель для подключения электродов. Кабель для электрода


Кабели для электродов - «ИНКАРТ»

Благодаря новейшим техническим достижениям и многолетнему профессиональному опыту, фирмой "ИНКАРТ" разработана новая серия кабелей «КАРДИОТЕХНИКА».

  • Надежная фиксация

    Разъем промышленного исполнения обеспечивает надежный и удобный способ соединения push-pull (без поворотов при коммутации). Специально разработанная конструкция держателя ЭКГ-элеткродов, оптимальная для холтеровского мониторирования, создана для надежной фиксации одноразовых ЭКГ-электродов и предотвращения проворота держателя на электроде, что уменьшает количество артефактов и улучшает качество ЭКГ сигнала.

    Кабель «КАРДИОТЕХНИКА» делает возможным использование одноразовых электродов различных фирм-производителей, имеющих разные диаметры "кнопки" электрода.

  • Долговечность

    Внешняя изоляция кабеля «КАРДИОТЕХНИКА» (полиуретан), устойчивая к использованию в агрессивной среде, позволяет сохранить эластичность и гибкость провода даже после длительного контакта с кожей пациента.

    Высокая точность сборки и качественный монтаж с использованием специального оборудования обеспечили увеличение надежности конструкции кабеля «КАРДИОТЕХНИКА».

  • "Интеллектуальная" система контроля

    Встроенный в разъем микропроцессор позволяет учитывать тип кабеля, ресурс работы (количество установок), индивидуальный номер, а также автоматически распознавать используемую систему отведений.

  • Датчик физической активности и положения тела

    Данная функция реализована в серийных кабелях серии «КАРДИОТЕХНИКА-07». Для оборудования «КАРДИОТЕХНИКА-04» такие кабели изготавливаются по запросу Заказчика.

    Встроенный в держатель ЭКГ-электрода датчик физической активности и положения тела помогает точно оценить положение тела пациента, так как он всегда четко зафиксирован на пациенте, а не в мониторе. Это может быть важно при анализе некоторых патологических состояний, возникающих только в каком-либо одном положении тела, например, апноэ - на спине или аритмии – на левом боку.

Область применения

  • Холтеровское мониторирование
  • Проведение нагрузочных проб
  • Регистрация стандартной ЭКГ

Гарантийный срок эксплуатации - 4 месяца. Гарантированное число постановок - 100.

Внимание! Остерегайтесь подделок!

В последнее время участились случаи приобретения кабеля, изготовленного сторонними организациями, имитирующими кабель "КАРДИОТЕХНИКА". При осмотре кабеля можно увидеть, что на внешней изоляции отсутствует маркировка "INCART".Кабели с разъемом 12 pin (выпуск не ранее 2009 года) имеют «интеллектуальную» систему контроля количества постановок (микропроцессор встроен в разъем самого кабеля). При подключении кабеля через регистратор к программе KT Registrator, в левом верхнем углу в программе появится информация о кабеле: тип кабеля, количество постановок. Если написано: «кабель неизв.» или «Кабель отсутствует», то такой кабель не является "интеллектуальным", при его использовании очень высока вероятность некачественной записи, за что фирма "ИНКАРТ" ответственности не несет. Будьте внимательны!

www.incart.ru

ИНИСС Мед | Кабель для подключения электродов

Кабель подключения электродов для низкочастотных электротерапевтических процедур РС7ТВ-К-Ч (применяется с аппаратами «Амплипульс-5», «Амплипульс-6»)

Кабель подключения электродов для низкочастотных электротерапевтических процедур RCA-К-Ч (применяется с аппаратами «Амплипульс-8»)

Кабель подключения электродов для низкочастотных электротерапевтических процедур TS-К (применяется с аппаратами «Поток» до 2001 г.в.)

Кабель подключения электродов для низкочастотных электротерапевтических процедур TS-К, 2-х контактный (применяется с аппаратами «Поток» до 2001 г.в.)

Кабель подключения электродов для низкочастотных электротерапевтических процедур TS-Ч (применяется с аппаратами «Поток» до 2001 г.в.)

Кабель подключения электродов для низкочастотных электротерапевтических процедур TS-Ч, 2-х контактный (применяется с аппаратами «Поток» до 2001 г.в.)

Кабель подключения электродов для низкочастотных электротерапевтических процедур ВР-112-К (применяется с аппаратами «Поток» после 2001 г.в., «Элфор»)

Кабель подключения электродов для низкочастотных электротерапевтических процедур ВР-112-К, 2-х контактный (применяется с аппаратами «Поток» после 2001 г.в., «Элфор»)

Кабель подключения электродов для низкочастотных электротерапевтических процедур ВР-112-Ч (применяется с аппаратами «Поток» после 2001 г.в., «Элфор»)

Кабель подключения электродов для низкочастотных электротерапевтических процедур ВР-112-Ч, 2-х контактный (применяется с аппаратами «Поток» после 2001 г.в., «Элфор»)

Кабель подключения электродов для низкочастотных электротерапевтических процедур ОНЦ-ВГ-4-5/16в-К-Ч (применяется с аппаратом «Миоритм-040»)

www.xn--d1abiaue3aa.xn--p1ai

Всасывающее устройство и электродный кабель для электрокардиографа

Группа изобретений относится к медицинской технике. Всасывающее устройство для электрокардиографа содержит корпус, в котором расположен вакуумный насос. Корпус содержит интерфейс для передачи сигналов измерений на узел приема данных электрокардиографа и несколько разъемов для электродных кабелей, каждый из которых содержит по меньшей мере один измерительный кабель с одним всасывающим шлангом и одним вакууммируемым электродом. Длина электродных кабелей выбрана в зависимости от места измерения на теле пациента, а корпус выполнен переносным или закрепляемым на кронштейне держателя. Раскрыты альтернативные варианты выполнения всасывающего устройства для электрокардиографа, электродный кабель для электрокардиографа и поддерживающее устройство с кронштейном для использования с электрокардиографом. Группа изобретений обеспечивает облегчение снятия электрокардиограммы в процессе движения пациента. 5 н. и 12 з.п. ф-лы, 8 ил.

 

Область техники

Настоящее изобретение относится к всасывающему устройству для электрокардиографа согласно ограничительной части пп. 1, 15 или 16 формулы изобретения, к электродному кабелю для электрокардиографа согласно ограничительной части п. 17, а также к поддерживающему устройству согласно ограничительной части п. 18 формулы изобретения.

Уровень техники

Электрокардиографы (приборы для снятия электрокардиограмм, ЭКГ) содержат узел сбора и оценки данных, а также соединенные с ним электродные кабели с электродами. Электроды либо наклеиваются на кожу пациента, либо фиксируются понижением давления. При использовании пониженного давления необходимо всасывающее устройство с вакуумным насосом.

Электрокардиографы с наклеивающимися электродами могут быть сделаны сравнительно маленькими и переносными. Примеры таких приборов известны из документов DE 10247435, US 6907283, US 6871089 и US 7361188.

Электрокардиографы с вакуумными электродами, напротив, обычно выполняются как передвижные стационарные приборы. Всасывающее устройство содержит упомянутый вакуумный насос, соединение с узлом сбора и оценки данных, измерительный и вакуумный шланг к распределительному устройству, упомянутое распределительное устройство, а также несколько отходящих от этого распределительного устройства электродных кабелей с расположенными на них электродами. Электродные кабели обычно заключают в себе как электрические измерительные кабели, так и просвет для создания пониженного давления у электрода. Чтобы кабели или шланги не запутались, обычно используется закрепленный на передвижном штативе стационарного прибора держатель, соединенный с кронштейном, на котором крепится распределительное устройство. Этот держатель подводится как можно ближе к пациенту. Когда пациент лежит, это выполнимо, но при снятии ЭКГ в движении - довольно трудно. Электродные кабели - сравнительно длинные, и управляться с ними хлопотно. Кроме того, они ограничивают свободу движений пациента. Далее, длинные электродные кабели с встроенным просветом всасывания имеют еще и тот недостаток, что измерительные сигналы оказываются подвержены помехам. К тому же есть опасность повреждения длинных кабелей, например их может защемить или даже их может переехать передвижной штатив. Еще один недостаток заключается в том, что вся установка занимает сравнительно много места.

Хотя в документе DE 20311343 было предложено поместить схему оценки прямо в распределительное устройство, однако по-прежнему применяют стационарный прибор с его известными недостатками.

В документе US 7 054677 предложено выполнять всасывающую установку по возможности легкой и снабжать ее ручкой для переноски. Однако шланги тем не менее остаются сравнительно длинными.

В документе DE 20 2005012455 раскрыт электрокардиограф с всасывающей установкой и узлом обработки и передачи данных, причем сигналы измерений подаются с электродов по шлангам всасывающей установки к передатчику, а с него беспроводной связью пересылаются на приемник. Здесь также необходимы сравнительно длинные шланги от всасывающей установки к пациенту.

В документе WO 2006/011144 раскрыты перчатка с несколькими присасывающимися электродами и электрокардиограф с встроенным отсасывающим насосом, который может быть закреплен на руке. От кардиографа к перчатке идет кабель.

В документе US 2006/0161068 раскрыта система электрокардиографа с многослойными шлангами, содержащими просвет всасывания и проложенный в просвете всасывания электродный кабель.

Раскрытие изобретения

Задача настоящего изобретения заключается в том, чтобы облегчить снятие ЭКГ даже и при движении пациента.

Эта задача решена всасывающим устройством для электрокардиографа, содержащим корпус, в котором расположен вакуумный насос, причем корпус содержит интерфейс для передачи сигналов измерений на узел приема данных электрокардиографа. Корпус содержит несколько разъемов для электродных кабелей, каждый из которых содержит по меньшей мере один измерительный кабель с одним всасывающим шлангом и одним вакууммируемым электродом.

Эта задача решена также всасывающим устройством для электрокардиографа, содержащим вакуумный насос и корпус, соединенный с вакуумным насосом штекерным разъемом или коротким трубопроводом, причем корпус содержит интерфейс для передачи сигналов измерений на узел приема данных электрокардиографа. Корпус имеет несколько разъемов для электродных кабелей, каждый из которых содержит по меньшей мере один измерительный кабель с одним всасывающим шлангом и одним вакууммируемым электродом. Короткий трубопровод имеет длину менее приблизительно 30 см, предпочтительно менее приблизительно 15 см. Он может быть выполнен гибким или жестким. Вакуумный насос может также помещаться во втором корпусе и пристыковываться к первому корпусу, располагаясь рядом или сверху. Штекерный разъем может при этом одновременно образовывать вакуумное подсоединение.

Во всех вариантах осуществления корпус предпочтительно выполняется переносным или закрепляемым на кронштейне держателя.

Вышеуказанная задача решена также всасывающим устройством для электрокардиографа, содержащим корпус, в котором помещен вакуумный насос, причем корпус содержит интерфейс для передачи сигналов измерений на узел приема данных электрокардиографа и по меньшей мере один разъем для подсоединения электродных кабелей, и при этом всасывающее устройство содержит, далее, несколько таких электродных кабелей, содержащих, каждый по меньшей мере один измерительный кабель с одним всасывающим шлангом и одним вакууммируемым электродом. Длина соединения по меньшей мере одного разъема корпуса с отдельным вакуумным электродом составляет не более приблизительно 80 см, предпочтительно от 40 до 50 см.

В частности, такие короткие трубопроводы предпочтительны в вариантах осуществления с переносным всасывающим устройством.

Вышеуказанная задача решена также поддерживающим устройством с кронштейном для использования с электрокардиографом, причем в кронштейне или на кронштейне помещено всасывающее устройство для электрокардиографа, и это всасывающее устройство включает корпус, в котором помещен вакуумный насос, при этом корпус содержит интерфейс для передачи сигналов измерений на узел приема данных электрокардиографа, а также имеет несколько разъемов для электродных кабелей, каждый из которых содержит один измерительный кабель с одним всасывающим шлангом и одним вакууммируемым электродом.

В этом варианте осуществления, в зависимости от типа и расположения кронштейна, могут использоваться и более длинные кабели.

Всасывающее устройство согласно настоящему изобретению выполнено в виде отдельного прибора и может носиться на теле пациента или закрепляться вблизи от него. Например, оно может быть закреплено на койке пациента, на беговой дорожке или на тестовом велотренажере. Для этого на корпусе всасывающего устройства предпочтительно предусмотреть соответствующие средства крепления.

Теперь, согласно настоящему изобретению, можно использовать сравнительно короткие электродные кабели, идущие от вакуумного насоса к вакуумным электродам.

Свободу движений пациента больше не ограничивают длинные шланги. Управляться с короткими шлангами медперсоналу проще. Всасывающая установка может быть расположена оптимально по отношению к пациенту. В частности, благодаря этому может быть достигнута оптимальная мощность всасывания и, соответственно, оптимальное расположение электродов на теле пациента. Минимизируется место, занимаемое всасывающим устройством при его использовании, а также при его транспортировке к пациенту и при складировании устройства, когда оно не используется. Еще одно преимущество состоит в том, что данный прибор, в сравнении с большими стационарными аппаратами, проще паковать, и, например, его пересылка для техобслуживания может обойтись дешевле.

Предотвращается также опасность повреждения шлангов и возникновения помех измерительных сигналов. Следующее преимущество состоит в том, что, благодаря коротким шлангам, вся установка электрокардиографа не оказывает такого угнетающего и пугающего воздействия на пациента. Пациент спокойнее, и измерительные сигналы благодаря этому в большей степени соответствуют нормальному состоянию пациента.

Интерфейс связи с электрокардиографом предпочтительно - обычный электрический штекерный разъем.

В одном из предпочтительных вариантов осуществления настоящего изобретения в корпусе предусмотрено распределительное устройство с одним входом и несколькими выходами, причем вход распределительного устройства соединен с выходом вакуумного насоса, а каждый выход распределительного устройства соединен с одним из упомянутых разъемов электродных кабелей. Благодаря этому пониженное давление, создаваемое вакуумным насосом, может быть приложено к электродным кабелям.

В другом варианте осуществления распределительное устройство может стыковаться с корпусом или соединяться с ним коротким трубопроводом. В этом случае в корпусе предпочтительно имеется лишь один единственный порт.

Далее, всасывающее устройство предпочтительно содержит упомянутые электродные кабели с присоединенными к ним вакууммируемыми электродами. Эти электродные кабели могут быть - предпочтительно разъемно - соединены с корпусом или внешним распределительным устройством, расположенным рядом с всасывающим устройством. Но они могут быть и неразъемно соединены с корпусом или расположенным поблизости от корпуса распределительным устройством. Все электродные кабели всасывающего устройства могут быть выполнены одинаковыми по длине. Но предпочтительно они делаются разной длины, причем их длина предпочтительно выбирается в зависимости от места измерения на человеческом теле.

Предпочтительно электродные кабели имеют длину от 40 до 80 см. Хорошие результаты измерений в области грудной стенки были получены при использовании электродных кабелей длиной от 40 до 50 см, предпочтительно около 40 см. Предпочтительная длина электродных кабелей для измерений в периферийных областях человеческого тела, в частности для измерений на конечностях, составляет от 50 до 80 см, предпочтительно около 50 см.

Во всасывающем устройстве согласно настоящему изобретению могут использоваться известные электродные кабели с встроенным измерительным кабелем и всасывающим шлангом. Предпочтительно электродные кабели выполняются в виде комбинированных шлангов, содержащих по меньшей мере один электрический сигнальный кабель и один всасывающий шланг. При этом всасывающий шланг предпочтительно содержит центрально проходящий просвет.

Но в одном из предпочтительных вариантов осуществления настоящего изобретения электродный кабель изготовлен из полимера, в частности, из силикона. При этом электродный кабель предпочтительно выполнен как многослойный шланг. В одном из предпочтительных вариантов осуществления электродный кабель содержит, по меньшей мере четыре, предпочтительно именно четыре слоя. При этом внешний, первый, слой выполнен электроизолирующим, следующий за первым второй слой выполнен электропроводящим, следующий за вторым третий слой выполнен электроизолирующим и следующий за третьим, внутренний, четвертый слой выполнен электропроводящим. Четвертый слой предпочтительно образует внешнюю оболочку всасывающего шланга. Такой электродный кабель просто и дешево изготавливать, и он обеспечивает оптимальную передачу сигнала. Особенно предпочтительно то, что такая конструкция допускает сравнительно малый радиус изгиба электродного кабеля.

Дальнейшие варианты осуществления изобретения раскрыты в зависимых пунктах формулы.

Краткое описание чертежей

Ниже раскрывается один предпочтительный вариант осуществления настоящего изобретения, проиллюстрированный чертежами, которые служат исключительно целям объяснения и не должны толковаться в ограничительном смысле. На чертежах представлены:

на ФИГ. 1 - вид всасывающего устройства согласно настоящему изобретению;

на ФИГ. 2 - вид в аксонометрии всасывающего устройства ФИГ. 1;

на ФИГ. 3 - вид сбоку электродного кабеля всасывающего устройства ФИГ. 1;

на ФИГ. 4 - вид в аксонометрии электродного кабеля ФИГ. 3;

на ФИГ. 5 - поперечный разрез электродного кабеля ФИГ. 3;

на ФИГ. 6 - поддерживающее устройство с приемником для всасывающего устройства согласно настоящему изобретению;

на ФИГ. 7 - пояс с поддерживающим устройством и всасывающим устройством; и

на ФИГ. 8 - плечевая портупея с поддерживающим устройством, заключающим в себе всасывающее устройство.

Осуществление изобретения

На ФИГ. 1 и 2 представлено всасывающее устройство согласно настоящему изобретению. Оно содержит корпус 1 с помещенным в нем, здесь не видным, вакуумным насосом. Корпус 1 предпочтительно содержит также электронную систему управления вакуумным насосом и, возможно, датчик для контроля мощности всасывания вакуумного насоса или всасывающего устройства.

Корпус 1 предпочтительно выполнен сравнительно плоским в виде прямоугольного параллелепипеда. Он предпочтительно снабжен не показанными здесь элементами управления для активации вакуумного насоса и управления им или для ручного обслуживания электронной системы управления. Элементы управления - обычные, например: переключатели, кнопки и сенсорные экраны. Количество элементов управления предпочтительно сведено к минимуму, чтобы обеспечить простоту обслуживания.

Корпус 1 предпочтительно снабжен средствами крепления на теле пациента или вблизи от него, например на койке пациента, на беговой дорожке или на велосипеде. Эти средства могут представлять собой крючки, липучки или ремни. Корпус 1 может также быть обернут лентой и с ее помощью крепиться на нужном месте.

Корпус 1 предпочтительно снабжен также дисплеем для передачи данных к насосу, и также предпочтительно - через во всяком случае подключенный электрокардиограф. Кроме того, могут индицироваться данные по электродным кабелям и электродам.

Вакуумный насос предпочтительно - с электроприводом. В корпусе может быть помещена батарея, или вакуумный насос может быть подключен к внешней питающей сети - или к батарее внешнего электрокардиографа. В качестве вакуумного насоса могут быть использованы известные всасывающие насосы, например мембранные вакуумные насосы.

Корпус 1 снабжен разъемом для соединения с электрокардиографом известного типа или с таковым же узлом сбора и оценки данных. На ФИГ. 1 и 2 показаны уже вставленный в корпус 1 соединительный штекер 30 такого электрокардиографа и соответствующий кабель 3 соединения и передачи данных, в частности, содержащий электрические кабели, ведущие к вилкам 31, 32. Эти вилки 31, 32 могут подсоединять соответствующий, не показанный здесь, узел сбора и оценки данных - или входящий в электрокардиограф принтер или монитор.

На противолежащей узкой стороне корпуса 1 имеется несколько разъемов для электродных кабелей 2. И здесь также соответствующие соединительные штекеры 20 электродных кабелей, как показано на фигурах, уже вставлены. Каждый из этих штекеров 20 соединен с одним из шлангов 21, причем каждый из шлангов 21 заканчивается на свободном конце измерительным электродом 22. Это хорошо видно на ФИГ. 3 и 4.

Длина шлангов 21, в сравнении с размерами корпуса 1, показана здесь не обязательно в масштабе.

Как видно из ФИГ. 4, электроды выполнены обычным образом. Они содержат периферическое уплотнительное кольцо 220, прилегающее к коже пациента. Внутри уплотнительного кольца 220 помещена электродная пластина 221, контактирующая с кожей для снятия ЭКГ. Уплотнительное кольцо 220 предпочтительно изготовлено из мягкого эластомера, в частности из силикона.

Электродный кабель 2 представляет собой комбинированный шланг. Он содержит по меньшей мере один, предпочтительно два или несколько, электрических проводников для соединения с электродной пластиной 221, а также полый всасывающий шланг для соединения с полостью, образованной уплотнительным кольцом 220.

Штекер 20 представляет собой штекер обычного типа, позволяющий осуществить электрические соединения с электрическими кабелями, а также отделенное от них соединение с всасывающим просветом. Порт на корпусе 1 всасывающего устройства согласно настоящему изобретению выполнен как соответствующая ответная часть штекера. Такого рода штекерные разъемы раскрыты в распределительных устройствах известных электрокардиографов.

Для того чтобы созданное вакуумным насосом разрежение могло быть передано на несколько портов корпуса 1 и тем самым - на всасывающие просветы и электроды 221, в корпусе 1 предпочтительно помещается не показанное здесь распределительное устройство, соединяющее всасывающий выход вакуумного насоса с отдельными портами корпуса 1.

Электрические соединения штекеров 20 электродных кабелей 2 или соответствующих частей разъемов корпуса 1 со стороны электродов, а также части разъема корпуса 1 со стороны электрокардиографа и, тем самым, штекера 30 соединительного кабеля 3, могут осуществляться в приборе также через это распределительное устройство или независимо от него. Последнее предпочтительно, так как в этом случае распределительное устройство проще и компактнее.

В качестве электродных кабелей 2 могут быть использованы кабели известного типа. Однако предпочтительно использовать многослойный кабель, содержащий по меньшей мере четыре, предпочтительно именно четыре слоя. Такой электродный кабель показан на ФИГ. 5. Он предпочтительно изготовлен из полимера. Особенно подходят полимеры на основе силикона. Первый, самый внешний, слой 210 выполнен электроизолирующим. Граничащий с первым слоем 210 второй слой 211 выполнен электропроводящим, граничащий со вторым слоем 211 третий слой 212 вновь выполнен электроизолирующим, и самый внутренний, четвертый, слой 213, в свою очередь граничащий с третьим слоем 212, выполнен электропроводящим. В середине имеется центрально идущий просвет 214, который образует всасывающий шланг.

На ФИГ. 6 представлен дальнейший вариант осуществления настоящего изобретения. Здесь вакуумный насос с его корпусом 1 помещен на кронштейне 40 держателя 4. Держатель предпочтительно представляет собой держатель передвижного штатива установки для снятия ЭКГ или кронштейн, закрепленный, например, на стационарном тренажере, например на велотренажере или на беговой дорожке. Но может быть использован и другой передвижной или стационарный держатель.

Кронштейн 40 содержит приемник 41, в котором съемно удерживается корпус вакуумного насоса. Приемник 41 может быть составной частью кронштейна или, как показано на фигуре, разъемно с ним соединяться. На фигуре приемник 41 подвешен на кронштейне 40. Альтернативно, корпус 1 вакуумного насоса может быть несъемной составной частью кронштейна 40 и пользователем без инструмента не может быть отделен от остальной части кронштейна.

Приемник 41 предпочтительно состоит из основы в форме прямоугольного параллелепипеда с открытыми с одной или с обеих сторон пазами, в которые может быть введен корпус 1. Приемник предпочтительно изготовлен из полимера или металла.

Если используется вакуумный насос с кронштейном, то электродные кабели и шланги, идущие к пациенту, предпочтительно выполняются длиннее, чем в первом примере осуществления.

На ФИГ. 7 представлено это поддерживающее устройство 41, закрепленное на поясе 5. На ФИГ. 8 показано применение этого устройства с плечевой портупеей 6.

Всасывающее устройство согласно настоящему изобретению для применения в установке электрокардиографа является компактным и позволяет использовать сравнительно короткие электродные кабели. Вся установке для снятия ЭКГ становится благодаря этому более мобильной и более универсальной в применении.

1. Всасывающее устройство для электрокардиографа, содержащее корпус (1), в котором расположен вакуумный насос, причем корпус (1) содержит интерфейс для передачи (3) сигналов измерений на узел приема данных электрокардиографа, отличающееся тем, что корпус (1) содержит несколько разъемов для электродных кабелей (2), каждый из которых содержит по меньшей мере один измерительный кабель (211, 213) с одним всасывающим шлангом (214) и одним вакууммируемым электродом (22), при этом длина электродных кабелей (2) выбрана в зависимости от места измерения на теле пациента, а корпус (1) выполнен переносным или закрепляемым на кронштейне держателя.

2. Всасывающее устройство по п. 1, отличающееся тем, что в корпусе (1) предусмотрено распределительное устройство с одним входом и несколькими выходами, причем вход распределительного устройства соединен с выходом вакуумного насоса, а каждый выход распределительного устройства соединен с одним из указанных разъемов для электродных кабелей (2) таким образом, что пониженное давление, создаваемое вакуумным насосом, может быть приложено к всасывающим шлангам электродных кабелей (2).

3. Всасывающее устройство по п. 1, отличающееся тем, что содержит электродные кабели (2) и соединенные с ними вакуумные электроды (22).

4. Всасывающее устройство по п. 3, отличающееся тем, что электродные кабели (2) имеют длину от 40 до 80 см.

5. Всасывающее устройство по одному из пп. 3 или 4, отличающееся тем, что по меньшей мере часть электродных кабелей (2) выполнены для измерений в области грудной стенки и имеют длину от 40 до 50 см, предпочтительно около 40 см.

6. Всасывающее устройство по одному из пп. 3 или 4, отличающееся тем, что по меньшей мере часть электродных кабелей (2) имеют длину от 50 до 80 см, предпочтительно около 50 см.

7. Всасывающее устройство по п. 1, отличающееся тем, что каждый электродный кабель (2) представляет собой комбинированный шланг, содержащий по меньшей мере один электрический сигнальный кабель (211, 213) и один всасывающий шланг (214).

8. Всасывающее устройство по п. 7, отличающееся тем, что всасывающий шланг (214) представляет собой центральный просвет в электродном кабеле (2).

9. Всасывающее устройство по одному из п.п. 7 или 8, отличающееся тем, что электродный кабель (2) изготовлен из полимера, в частности из полимера на основе силикона.

10. Всасывающее устройство по одному из п.п. 7 или 8, отличающееся тем, что электродный кабель (2) представляет собой многослойный шланг.

11. Всасывающее устройство по п. 10, отличающееся тем, что электродный кабель (2) содержит четыре слоя, причем внешний, первый, слой (210) выполнен электроизолирующим, следующий за первым слоем (210) второй слой (211) выполнен электропроводящим, следующий за вторым слоем (211) третий слой (212) выполнен электроизолирующим и следующий за третьим слоем (212) внутренний, четвертый, слой (213) выполнен электропроводящим.

12. Всасывающее устройство по п. 11, отличающееся тем, что электродный кабель (2) содержит ровно четыре слоя, причем четвертый слой (213) образует внешнюю оболочку всасывающего шланга (214).

13. Всасывающее устройство по п. 1, отличающееся тем, что корпус (1) содержит средство крепления корпуса на человеческом теле.

14. Всасывающее устройство для электрокардиографа, содержащее корпус (1), в котором расположен вакуумный насос, причем корпус (1) содержит интерфейс для передачи (3) сигналов измерений на узел приема данных электрокардиографа и по меньшей мере один разъем для подсоединения электродных кабелей (2), при этом всасывающее устройство содержит несколько таких электродных кабелей (2), каждый из которых содержит по меньшей мере один измерительный кабель (211, 213) с одним всасывающим шлангом (214) и одним вакууммируемым электродом (22), отличающееся тем, что длина соединения по меньшей мере одного разъема корпуса (1) с отдельным вакуумным электродом (22) составляет не более приблизительно 80 см, предпочтительно от 40 до 50 см, при этом длина электродных кабелей (2) выбрана в зависимости от места измерения на теле пациента, а корпус (1) выполнен переносным или закрепляемым на кронштейне держателя.

15. Всасывающее устройство для электрокардиографа, содержащее корпус с вакуумным насосом и распределительное устройство, причем распределительное устройство выполнено с возможностью стыковки с корпусом, причем распределительное устройство содержит интерфейс для передачи (3) сигналов измерений на узел приема данных электрокардиографа, отличающееся тем, что распределительное устройство имеет несколько разъемов для электродных кабелей (2), каждый из которых содержит по меньшей мере один измерительный кабель (211, 213) с одним всасывающим шлангом (214) и одним вакууммируемым электродом (22), при этом длина электродных кабелей (2) выбрана в зависимости от места измерения на теле пациента, а корпус (1) выполнен переносным или закрепляемым на кронштейне держателя.

16. Электродный кабель (2) для электрокардиографа, в частности, для использования во всасывающем устройстве по одному из пп. 1-13, причем указанный электродный кабель (2) содержит по меньшей мере один электрический сигнальный кабель и всасывающий шланг, отличающийся тем, что он содержит четыре слоя, причем внешний, первый, слой (210) выполнен электроизолирующим, следующий за первым слоем (210) второй слой (211) выполнен электропроводящим, следующий за вторым слоем (211) третий слой (212) выполнен электроизолирующим и следующий за третьим слоем (212) внутренний, четвертый, слой (213) выполнен электропроводящим.

17. Поддерживающее устройство с кронштейном для использования с электрокардиографом, причем в кронштейне или на кронштейне помещено всасывающее устройство для электрокардиографа, указанное всасывающее устройство содержит корпус (1), в котором помещен вакуумный насос, при этом корпус (1) содержит интерфейс для передачи (3) сигналов измерений на узел приема данных электрокардиографа и имеет несколько разъемов для электродных кабелей (2), каждый из которых содержит по меньшей мере один измерительный кабель (211, 213) с одним всасывающим шлангом (214) и одним вакууммируемым электродом (22), при этом длина электродных кабелей (2) выбрана в зависимости от места измерения на теле пациента, а корпус (1) выполнен переносным или закрепляемым на кронштейне держателя.

www.findpatent.ru

Сварочные провода и электроды

Подробности Подробности Опубликовано 25.05.2012 16:17 Просмотров: 20418

Страница 1 из 7

СВАРОЧНЫЕ ПРОВОДА

Сварочные провода должны быть гибкими, с легкой и прочной изоляцией. Жесткие провода с тяжелой изоляцией утомляют рабочего и затрудняют выполнение сварки. Обычно ДЛЯ сварочной цепи используют специальные гибкие провода марки ПРГД Сечения гибких сварочных проводов по ГОСТ 6731-53 «Провода для электрической дуговой сварки». Такие провода делаются из тонких медных проволок и имеют резиновую изоляцию и резиновую шланговую оболочку. По ГОСТ 6751 — 53 предусмотрены следующие сечения проводов: 6, 10, 16, 25, 35, 50, 70, 95 и 120 мм2. Провода предназначены для эксплуатации при напряжении до 120 е. Сечение гибких проводов в зависимости от силы сварочного тока выбирается по таблице. Желательно, чтобы длина гибкого провода, к которому прикреплен электрический держатель, была не менее 3 ж. Остальная часть проводов, образующая сварочную цепь, может быть взята марки ПР по ГОСТ 1977-54 или КРИТ по ГОСТ 2650-44.

ВЫБОР ТОКА

Сечение проводов в мм2 двойной 25 300Сечт450и600д50 70 95 2x16 2X25 2X35. В настоящее время более широкое распространение имеет сварка на переменном токе. Это объясняется главным образом эксплуатационными и экономическими преимуществами этого вида сварки, состоящими в следующем эксплуатации.

2. Коэффициент полезного действия (к. п. д.) сварочных трансформаторов с регуляторами составляет 0,8-0,85, а агрегатов для однопостовой сварки на постоянном токе 0,3-0,6. При многопостовой сварке на постоянном токе значительная часть энергии теряется в балластном реостате, поэтому средний кпд поста составляет только 0,2 -0,43. Различные кпд оборудования обусловливают различный расход энергии на 1 кг наплавленного металла: 3-4 квт-час/кг при сварке на переменном токе, 6-8 квт-час/кг при однопостовой и 8-10 квт-час/кг при многопостовой сварке на постоянном токе. Кроме того, при сварке на переменном токе магнитное обдувание дуги значительно меньше, чем при сварке на постоянном токе. К недостаткам сварки на переменном токе относите: 1) низкий коэффициент мощности (cos) сварочного поста, равный обычно 0,3-0,4; cos среднего электрического двигателя у преобразователя для сварки на постоянном токе равен 0,6-0,7; не уменьшая устойчивость сварочной дуги переменного тока при низком коэффициенте мощности сварочного поста, равный обычно 0,3-0,4; cos среднего электрического двигателя преобразователя для сварки на постоянном токе равна 0,6-0,7; меньше устойчивость переменного тока при сварке электродами малых диаметров; в практике иногда применяют электроды, которыми можно работать только при обратной полярности постоянного тока (например, УОНИ-13 и др.), а также электроды, предназначенные для сварки на переменном и постоянном токе, но дающие лучшее качество швов при сварке на постоянном токе (например, К-5 и др.). Применение таких электродов ограничивает сварку на переменном токе. 46кие требования, которым должна удовлетворять стальная сварочная проволока, предназначенная для ручной, полуавтоматической и автоматической сварки и наплавки, регламентированы ГОСТ 2246-60. Предусмотрены следующие диаметры проволоки (в мм.): 0,3; 0,5; 0,8: 1,0; 1,2; 1,6; 2,0; 3,0; 4,0; 5,0; 8,0; 10,0; 12,0. Химический состав проволоки приведен в табл. 11. Проволока поставляется свернутой в мотки. Размеры и вес мотков должны соответствовать указанным в табл. 12. ГОСТ предусматривает, что по требованию потребителя проволока диаметром 5 мм и менее для механизированных способов сварки должна поставляться в катушках, пригодный для непосредственного использования в сварочных автоматах и полуавтоматах. Раз ер и вес катушек должны соответствовать указанным в табл. 13.: Поверхность проволоки должна быть чистой и гладкой, без окалины, ржавчины и масла. Проволока из высоколегированной стали должна поставляться в травленном и отведенном состоянии без всяких следов смазки. Проволока из углеродистой и легированной стали, предназначенная для механизированных способов сварки, по требованию потребителя должна изготовляться с обедненной поверхностью. Несмотря на большое число марок сварочной проволоки, изготовляемых промышленностью, при наплавке иногда возникает необходимость в применении проволоки, не предусмотренной ГОСТ 2246-60. Например, при вибродуговой наплавке применяется проволока из сталей 45Г2, 60, У7, при наплаве которым углекислого газа — проволока из сталей XI3, XI7 и других марок. При автоматической дуговой наплавке под флюсом зачастую применяется порошковая проволока, состоящая из металлической оболочки, внутрь которой запрессован легирующий порошок. Так, при наплавке валков прокатных станов широко применяется порошковая проволока марки ППЗХ В8, г) электроды для наплавки поверхностных слоев с особыми свойствами (табл. 18). Каждый класс делится на несколько типов электродов. Для электродов каждого типа установлены требования, касающиеся механических свойств и химического состава металла шва или наплавленного металла, а также механических свойств сварных соединений. Типы электродов для сварки углеродистых и легированных конструкционных сталей и электрод в для сварки легированных теплоустойчивых сталей регламентированы ГОСТ 9467-60. Электроды для сварки высоколегированных сталей с особыми свойствами и электроды для наплавки поверхностных слоев с особыми свойствами регламентированы ГОСТ 2523-51. Допускаемое содержание серы и фосфора в металле шва или наплавленном металле (по ГОСТ 2523-51). Типы электродов ГОСТ 9467-60 устанавливает четыре вида составов покрытий электродов для сварки конструкционных и теплоустойчивых сталей: рудно-кислое (Р), бутиловое (Т), фтористо-кальциевое (Ф). Допускаемые содержания серы и фосфора в металле шва или в наплавленном металле при применении электродов, предназначенных для сварки легированных сталей с особыми свойствами и наплавки поверхностных слоев с особыми свойствами катодная проволока, электроды и флюсы для сварки сталей трещин, вздутий и комков не размешанных компонентов и располагаться концентрично относительно стержня.

2. На поверхности электродов не допускаются: На б) оголенность от покрытия для электродов диаметром до 6 мм на расстоянии более 0,5 диаметра стержня, а для электродов диаметром свыше 6 мм не более 3 мм от торца, с которого начинают процесс расплавления электрода при сварке; шероховатость поверхности, продольные риски и отдельные задиры глубиной более XU толщины покрытия; от более трех местных вмятин, причем длина каждой вмятины не должна превышать 12 мм, а глубина не должна превышать 0,5 толщины покрытия) более трех пор а длине 100 мм, при этом диаметр каждого из пор не должен превышать 2 мм, а глубина — половины толщины покрытия; б2.жНа поверхности электродов не допускаются: оголенность от покрытия для электродов диаметром до 6 мм на расстоянии более 0,5 диаметра стержня, для электрона диаметром свыше 6 мм не б ее 3 мм от торца, с которого начинают процесс расплавления электрода при сварке; шероховатость поверхности, продольные риски и отдельные задиры глубиной более XU содержание покрытия; более трех местных вмятин, причем длина каждой вмятины не должна превышать 12 мм, а глубина не должна превышать 0,5 толщины покрытия; боец) по более трех пор на длине 100 мм, при этом диаметр каждой из пор не должен превышать 2 мм, а глубина — половины толщины покрытия; более двух волосных трещин, при этом длина каждой волосной трещины не должна превышать 12 мм. Покрытие не должно разрушаться при свободном падении электрода плашмя на гладкую стальную плиту с высоты 1 м (при диаметре электродов 3,0 мм и менее) и с высоты 0,5 м (при диаметре электродов более 3,0 мм)к Сварочные (технологические) свойства электродов должны удовлетворять следующим требованиям: е1. Дуга должна легко зажигаться и стабильно гореть при режимах сварки, рекомендованных в паспорте электрод. Покрытие должно плавиться равномерно, без отделения кусков покрытия и без образования из него «чехла» или «козырька», препятствующих непрерывному плавлению электрода. Наплавленный на поверхность пластины валик должен равномерно покрываться шлаком, охлаждение которой должно легко удаляться, зленный металл не должен иметь трещин. Кроме механических свойств металла шва и сварного соединения, химического состава наплавленного металла, важными характеристиками электродов являются коэффициент наплавки, величина потерь на разбрызгивание и угар электродного металла и коэффициент расхода электродного металла приходится на 1 а силы сварочного тока за 1 час горения дуги. Он более постоянен для определенной марки электродов, чем коэффициент наплавки, так как не зависит от потерь на разбрызгивание и угар, а зависит от состава электродного стержня и покрытия, силы сварочного тока и напряжения на дуге, рода сварочного тока и полярности при сварке на постоянном токе. Как видно из приведенного уравнения, чем больше потери на разбрызгивание и угар, тем меньше коэффициент наплавки. Потери на разбрызгивание и угар могут сильно измениться при сварке электродами определенной марки, от силы сварочного тока, длины дуги и других факторов. Например, при сварке электродами ОММ-5 диаметром 5 мм потери на разбрызгивание и угар могут изменяться от 3-5% при силе тока 150 а и средней длине дуги до 35-40%' при силе тока 300 а и длинной дуге. Чем больше сила сварочного тока и длина дуги, тем больше потери на разбрызгивание и угар. Потери на разбрызгивание и угар зависят также от состава электродных стержней и покрытий. Поэтому для каждой марки электродов при сварке на средних для этой марки режимах характерно определенное среднее значение потерь на разбрызгивание и угар. Коэффициенты расплавления и наплавки и потери на разбрызгивание и угар определяются опытным путем с использованием следующих уравнений: количество расплавленного электродного металла за время / горения сварочной дуги при опытной сварке в г; количество наплавленного металла за время t в г; время горения дуги в час; сила сварочного тока при опытной сварке покрытые электроды Величина коэффициента расхода электродов показывает количество электродов, необходимое для наплавления 1 кг металла шва, и определяется по уравнению.

Ниже приведены основные характеристики наиболее распространенных марок электродов для сварки и наплавки сталей. Сведения по электродам для сварки чугуна и цветных металлов приведены в главах IX и Х< 3.

Добавить комментарий

electrowelder.ru

КАБЕЛИ ДЛЯ ЭЛЕКТРОСВАРКИ

Кабели КОГ1 и КОГ2 для электрической дуговой сварки (рис. 9.8 и 9.9) предназначены для соединения электрододержателей автоматических и полуавтоматических сварочных установок с источником тока (переменное напряжение до 220 В частоты 50 Гц или постоянное напряжение).

Длительно допустимая температура нагрева жил кабелей до 65°С. Число, сечение, а также толщина изоляции жил кабелей указаны в табл. 9.14. Предельно допустимое отклонение от номинальной толщины изоляции — 10%.

Конструкции жил сечением 0,75, 50 - 150 мм2 соответствуют классу 6 ГОСТ 22483-77, сечением 16 — 35 мм2 — классу 5 с проволокой диаметром не более 0,31 мм. Скрутка элементов в кабель производится в одну сторону.

Изолированные вспомогательные жилы кабеля КОГ2 скручивают вместе со стренгами наружного повива основной жилы. Поверх токопроводящей жилы кабеля КОГ1 накладывают обмотку лентой ПЭТФ пленки, резиновую изоляцию (РТИ-2) и резиновую оболочку (РШ-1). между которыми допускается слой синтетической пленки. Толщина оболочки по категории Обр-2 ГОСТ 23286-78.

Токопроводящую жилу кабеля КОГ2 обматывают лентой ПЭТФ пленки, а поверх накладывают резиновую изоляцию, обладающую защитными свойствами. Толщины изоляции и оболочки кабелей приведены в табл. 9.15, а внешние диаметр и масса кабелей в табл. 9.16. Кабели поставляют длинами не менее 100 м. Допускается поставка отрезками длиной не менее 20 м к количестве не более 10% сдаваемой партии.

Изолированные жилы испытывают на АСИ переменным напряжением по категории ЭИ-2 ГОСТ 23286-78. При совмещении резиновой изоляции и оболочки кабель испытывают в готовом виде.

Готовые кабели всех марок испытывают переменным напряжением частоты 50 Гц по категории ЭИ-2 (ГОСТ 23286-78). Кабели выдерживают количество циклов, указанных в табл. 9.17, знакопеременных изгибов на угол π рад при радиусе изгиба 50 мм и растягивающем усилии 98 Н.

Полый электросварочный кабель КПЭС предназначен для подачи гибких электродов в зону сварки и для подвода сварочного переменного напряжения 42 или постоянного 48 В при температуре от -10 до +40°С.

Кабели изготовляют с основными жилами сечением от 25 до 70 мм2 и с жилами управления. В центре кабеля расположен направляющий канал, имеющий внутреннее отверстие диаметром от 3,2 до 7,5 мм в зависимости от сечения основной жилы.

Направляющий канал представляет собой полую спираль из стальной пружинной проволоки, навитой с зазором не более 0,25 мм. Спираль обмотана с перекрытием лентой из прорезиненной ткани. Основные токопроводящие жилы скручивают согласно табл. 9.18. Жила управления сечением 1 мм2 состоит из 14 медных проволок диаметром 0,3 мм. Ее изолируют резиной типа РТИ-1 толщиной 0,6 мм. Поверх изоляции накладывают оплетку капроновыми и лавсановыми нитями либо обмотку ПЭТФ пленкой.

Неизолированные стренги основной жилы и изолированные жилы управления скручивают вокруг обмотанного канала таким образом, чтобы три жилы управления были расположены в повиве рядом. Поверх скрученных жил накладывают обмотку суровой или прорезиненной тканью с перекрытием и наружную оболочку из резины типа РТИШ по ОСТ 16.0.505.015-79 толщиной по категории Обр-2 по ГОСТ 23286-78. Конструктивные данные направляющего канала, внешние диаметр и масса кабелей приведены в табл 9.19. Строительная длина кабеля (3,4 ± 0,1) м.

Изолированные жилы управления испытывают на АСИ переменным напряжением по категории ЭИ-2. В готовом виде кабель испытывают переменным напряжением 500 В частоты 50 Гц в течение 1 мин между основной жилой и жилами управления.

Рисунок 9.8. Схема кабеля КОГ2 с четырьмя жилами управления для дуговой электросварки

Рисунок 9.9. Схема одножильного кабеля КОГ2 для дуговой электросварки

Таблица 9.14. Номенклатура и толщина резиновой изоляции кабелей для дуговой электросварки

Марка Жила Число жил Номинальное сечение, мм2 Толщина изоляции, мм
КОГ1 Основная 0,8
25 и 35 0,8
50 и 70 1,0
95 и 120 1,2
1,4
КОГ2 16, 25, 35 0,8
50 и 70 1,0
95 и 120 1,2
1,4
Вспомогательная 2; 4 0,75 0,6

Таблица 9.15. Толщина резиновой изоляции и оболочки кабелей для дуговой сварки

S, мм2 Толщина изоляции, мм Толщина оболочки, мм, кабелей
КОГ1 КОГ2
0,8 1,2 1,6
0,8 1,2 1,6
0,8 1,2 1,6
1,0 1,4 2,0
1,0 1,6 2,0
1,2 1,8 2,4
1,2 2,0 2,4
1,4 2,0 2,8
Примечание. Толщина изоляции вспомогательных жил сечением 0,75 мм2 – 0,6мм.

Таблица 9.16. Внешний диаметр и масса кабелей КОГ1 и КОГ2

S, мм2 Марка кабеля
КОГ1 КОГ2 одножильный КОГ2 со вспомогательными жилами
D, мм g, кг/км D, мм g, кг/км D, мм g, кг/км
11,5 10,1 - -
13,3 11,9 14,8
15,7 13,7 15,5
18,2 16,2 18,0
19,8 17,8 19,7
21,9 - - 22,4
25,4 - - 23,5
27,5 - - 26,3

Таблица 9.17. Количество циклов знакопеременных изгибов кабелей КОГ1 и КОГ2

Кабель S, мм2 Количество циклов знакопеременных изгибов для кабелей
Одножильный 16-35
50-150
Одножильный со вспомогательными жилами 25-35
50-150

Таблица 9.18. Конструкция основной токопроводящей жилы кабеля КПЭС

S, мм2 Диаметр проволоки, мм Число проволок в жиле Число проволок в стренге Система скрутки стренги Число стренг
0,26 16(1+6)
0,26 16(1+6)
0,30 20(1+6)
0,30 20(1+6)

Таблица 9.19. Конструктивные данные направляющего канала, внешние диаметры и масса кабеля КПЭС

Жила Диаметр канала, мм Диаметр стальной проволоки для навивки спирали канала, мм D, мм g, кг/км  
основная управления внутренний наружный Предельное отклонение  
Число Сечение, мм2 Число Сечение, мм2  
“-” “+”  
1,0 5,0 7,8 0,20     20,5  
6,0 8,8     21,5  
6,0 8,8 0,55 1,4 22,5  
7,5 10,3     24,0  
7,5 10,3     20,0  
3,2 7,2 0,45 2,0 21,0  

Рисунок 9.10. Кабель для дуговой электросварки КОГ2

Похожие статьи:

poznayka.org

Кабели для нейтральных электродов ERBE

Артикул Описание
20194-077 Кабель, стандарт, 4 метра, подходит для нейтральных электродов с контактным язычком
20194-078 Кабель, стандарт, 5 метров, подходит для нейтральных электродов с контактным язычком
20194-070 Кабель, стандарт, 4 метра, подходит для многоразовых нейтральных электродов из силикона
20194-088 Кабель, стандарт, 5 метров, подходит для многоразовых нейтральных электродов из силикона
20194-075 Кабель, VIO, ICC, ACC для других приборов, 4 метра, может использоваться с многоразовыми нейтральными электродами из силикона
20194-089 Кабель, VIO, ICC, ACC для других приборов, 5 метров, может использоваться с многоразовыми нейтральными электродами из силикона
20194-079 Кабель, международный стандарт, 4 метра, может использоваться с нейтральными электродами с одной контактной поверхностью и с контактным язычком
20194-086 Кабель, международный стандарт, 5 метров, может использоваться с нейтральными электродами с одной контактной поверхностью и с контактным язычком
20194-080 Кабель, международный стандарт, 4 метра, может использоваться с нейтральными электродами с двумя контактными поверхностями и с контактным язычком
20194-087 Кабель, международный стандарт, 5 метров, может использоваться с нейтральными электродами с двумя контактными поверхностями и с контактным язычком
20194-081 Кабель, Martin, 4 метра, может использоваться с одноразовыми нейтральными электродами с контактным язычком
20194-076 Кабель, Martin, 4 метра, может использоваться с многоразовыми нейтральными электродами из силикона

www.uni-tec.su